Previous |  Up |  Next

Article

Title: A generalization of Pillai's arithmetical function involving regular convolutions (English)
Author: Tóth, László
Language: English
Journal: Acta Mathematica et Informatica Universitatis Ostraviensis
ISSN: 1211-4774
Volume: 6
Issue: 1
Year: 1998
Pages: 203-217
.
Category: math
.
MSC: 11A25
MSC: 11N37
idZBL: Zbl 1024.11005
idMR: MR1828135
.
Date available: 2009-01-30T09:07:00Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/120534
.
Reference: [1] K. Alladi: On generalized Euler functions and related totients., in New concepts in arithmetic functions, Matscience Report 83, Madras,, 1975. MR 0485656
Reference: [2] J. Chidambaraswamy R. Sitaramachandrarao: Asymptotic results for a class of arithmetical functions.Monatsh. Math. 99, 1985, pp. 19-27. MR 0778167
Reference: [3] P. Haukkanen: Some generalized totient functions.Math. Student 56, 1988, pp. 65-74. MR 1018263
Reference: [4] P. Haukkanen P. J. McCarthy: Sums of values of even functions.Portugal. Math. 48, 1991, pp. 53-66. MR 1107258
Reference: [5] H. G. Kopetzky: Ein asymptotischer Ausdruck für eine zahlentheoretische Funktion.Monatsh. Math. 84, 1977, pp. 213-217. Zbl 0551.10034, MR 0472735, 10.1007/BF01538032
Reference: [6] P. J. McCarthy: Introduction to arithmetical functions.(1986), Springer-Verlag, New York, Berlin. Zbl 0591.10003, MR 0815514
Reference: [7] W. Narkiewicz: On a class of arithmetical convolutions.Colloq. Math. 10, 1963, pp. 81-94. Zbl 0114.26502, MR 0159778
Reference: [8] S. S. Pillai: On an arithmetic function.J. Annamalai Univ. 2, 1933, pp. 243- 248. Zbl 0008.19603
Reference: [9] V. Sita Ramaiah: Arithmetical sums in regular convolutions.J. Reine Angew. Math. 303/304, 1978, pp. 265-283. Zbl 0391.10007, MR 0514685
Reference: [10] Suryanarayana: Extensions of Dedekind's $\psi$ function.Math. Scand. 26, 1970, pp. 107-118. Zbl 0194.07501, MR 0262188
Reference: [11] L. Tóth: Problem E 3211.Amer. Math. Monthly 94, 1987, p. 457 95; 1988, pp. 962-963.
Reference: [12] L. Tóth: An asymptotic formula concerning the unitary divisor sum function.Studia Univ. Babes-Bolyai, Math. 34, 1989, pp. 3-10. MR 1073748
Reference: [13] L. Tóth: The unitary analogue of Pillai's arithmetical function.Collect. Math. 40, 1989, pp. 19-30. Zbl 0712.11010, MR 1078089
Reference: [14] L. Tóth: Some remarks on a generalization of Euler's function.Seminar Arghiriade 23, 1990 9pp. Zbl 0758.11005, MR 1123938
Reference: [15] L. Tóth: The unitary analogue of Pillai's arithmetical function II..Notes Number Theory Discrete Math. 2 yr 1996, pp. 40-46. MR 1418833
Reference: [16] L. Tóth: Asymptotic formulae concerning arithmetical functions defined by cross-convolutions, I. Divisor-sum functions and Euler-type functions.(1997), Math. Debrecen 50, 159-176. MR 1436397
Reference: [17] L. Tóth: Asymptotic formulae concerning arithmetical functions defined by cross-convolutions, II. The divisor function.Studia Univ. Babes-Bolyai, Math., to appear.. MR 2361220
Reference: [18] L. Tóth: Asymptotic formulae concerning arithmetical functions defined by cross-convolutions, III. On the function $\tau_k$.Studia Sci. Math. Hungarica, to appear.. MR 1637588
Reference: [19] L. Tóth: The number and the sum of $P$ - $k$-ary divisors of m which are prime to n.submitted.
Reference: [20] L. Tóth P. Haukkanen: A generalization of Euler's $\phi$-function with respect to a set of polynomials.Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 39, 1996, pp. 69-83. MR 1451445
.

Files

Files Size Format View
ActaOstrav_06-1998-1_24.pdf 1.856Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo