Previous |  Up |  Next

Article

Title: Error bounds for arbitrary approximations of “nearly reversible” Markov chains and a communications example (English)
Author: van Dijk, Nico M.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 33
Issue: 2
Year: 1997
Pages: 171-184
.
Category: math
.
MSC: 60J20
idZBL: Zbl 0914.60040
idMR: MR1454277
.
Date available: 2009-09-24T19:08:01Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/124302
.
Reference: [1] T. Altiok, H. G. Perros: Queueing Networks with Blocking.North Holland, Amsterdam 1989. Zbl 0699.68010, MR 1048619
Reference: [2] V. E. Beneš: A thermodynamic theory of traffic in connecting network.Bell System Technical Journal VLII (1963), 3, 567-607. MR 0149572
Reference: [3] V. E. Beneš: Mathematical Theory of Connecting Networks and Telephone Traffic.Academic Press, New York 1965. MR 0210516
Reference: [4] P. J. Curtois: Decomposability: Queueing and Computer System Application.Academic Press, New York 1977. MR 0479702
Reference: [5] P. J. Curtois, P. Semal: Bounds and conditional steady-state distribution in large Markovian and queueing models.In: Teletraffic Analalysis and Computer Performance Evaluation (O. J. Boxma, J. W. Cohen and H. C. Tijms, eds.), North Holland, Amsterdam 1986.
Reference: [6] A. Hordijk, A. Ridder: Insensitive bounds for the stationary distribution on nonreversible Markov chains.J. Appl. Probab. 25 (1988), 9-20. MR 0929500
Reference: [7] A. Hordijk, N. M. van Dijk: Networks of queues. Part I: Job-local balance and the adjoint process. Part II: General routing and service characteristics.Lecture Notes in Control and Inform. Sci. 60 (1983), 158-205.
Reference: [8] F. P. Kelly: Reversibility and Stochastic Networks.Wiley, New York 1979. Zbl 0422.60001, MR 0554920
Reference: [9] J. G. Kemeny J. L. Snell, A. W. Knapp: Denumerable Markov Chains.Van Nostrand, Princeton N. J. 1966. MR 0207042
Reference: [10] C. D. Meyer: The condition of finite Markov chain and perturbation bounds for the limiting probabilities.SIAM J. Algebraic Discrete Methods 1 (1980), 273-283. MR 0586154
Reference: [11] R. R. Muntz E. De Souza e Silva, A. Goyal: Bounding availability of repairable computer systems.Performance Evaluation 17 (1989), 29-38. MR 1031590
Reference: [12] J. K. Muppala, K. S. Trivedi: Numerical Transient Solution of Finite Markovian Systems.Research Report, Duke University 1990.
Reference: [13] R. Nelson, L. Kleinrock: Rude--CSMA: A multihop channel access protocol.IEEE Trans. Comm. COM 33 (1985), 8, 785-791. Zbl 0572.94004, MR 0895048
Reference: [14] E. Pinsky, Y. Yemini: A statistical mechanics of some interconnection networks.In: Performance'84, Elsevier, North Holland, Amsterdam 1984. MR 0822805
Reference: [15] P. J. Schweitzer: Perturbation theory and undiscounted Markov renewal programming.Oper. Res. 17 (1969), 716-727. Zbl 0176.50003, MR 0256721
Reference: [16] E. Seneta: Sensitivity to perturbation of the stationary distribution: Some refinements.Linear Algebra Appl. 108 (1988), 121-126. Zbl 0657.60096, MR 0959699
Reference: [17] W. J. Stewart (ed.): Numerical Solutions of Markov Chains.Marcel Dekker, New York 1990. MR 1142108
Reference: [18] H. C. Tijms: Stochastic Modelling and Analysis.Wiley, New York 1986. MR 0847718
Reference: [19] J. van der Wal, P. J. Schweitzer: Iterative bounds on the equilibrium distribution of a finite Markov chain.Probab. in Engng. Inform. Sci. 1 (1987), 117-131. Zbl 1133.60330
Reference: [20] N. M. van Dijk: On the importance of bias terms for error bounds and comparison results.In: Numerical Solutions of Markov Chains (W. J. Stewart, ed.), Marcel Dekker, New York 1991, pp. 618-647. MR 1142133
Reference: [21] N. M. van Dijk: Approximate uniformization for continuous-time Markov chains with an application to performability analysis.Stochastic Process. Appl. 40 (1992), 339-357. Zbl 0753.60066, MR 1158030
Reference: [22] N. M. van Dijk, M. L. Puterman: Perturbation theory for Markov reward processes with applications to queueing.Adv. in Appl. Probab. 20 (1988), 78-99. Zbl 0642.60100, MR 0932536
Reference: [23] N. M. van Dijk, J. P. Veltkamp: Product form for stochastic interference systems.Probab. in Engng. Inform. Sci. 2 (1988), 355-376.
Reference: [24] J. P. Veltkamp: Cost Functions for Interference Systems and VLSI High-level Synthesis.Ph. D. Thesis. Twente University 1988.
Reference: [25] B. S. Yoon, B. S. Shanthikumar: Bounds and approximations for the transient behaviour of continuous-time Markov chains.Probab. in Engng. Inform. Sci. 3 (1989), 175-109.
.

Files

Files Size Format View
Kybernetika_33-1997-2_3.pdf 1.066Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo