Title:
|
Notes on a hierarchical theory of systems and applications (English) |
Author:
|
Karampetakis, N. P. |
Author:
|
Pugh, A. C. |
Author:
|
Hayton, G. E. |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
33 |
Issue:
|
2 |
Year:
|
1997 |
Pages:
|
185-201 |
. |
Category:
|
math |
. |
MSC:
|
93A13 |
MSC:
|
93A30 |
MSC:
|
93B17 |
MSC:
|
93C05 |
MSC:
|
93C35 |
idZBL:
|
Zbl 0910.93007 |
idMR:
|
MR1454278 |
. |
Date available:
|
2009-09-24T19:08:08Z |
Last updated:
|
2012-06-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/124303 |
. |
Reference:
|
[1] O. H. Bosgra, A. J. J. Van Der Weiden: Realizations in generalized state-space form for polynomial system matrices and the definition of poles, zeros and decoupling zeros at infinity.Internat. J. Control 33 (1981), 393-411. MR 0610894 |
Reference:
|
[2] G. E. Hayton A. C. Pugh, P. Fretwell: Infinite elementary divisors of a matrix polynomial and implications.Internat. J. Control 47 (1988), 53-64. MR 0929725 |
Reference:
|
[3] G. E. Hayton A. B. Walker, A. C. Pugh: Infinite frequency structure-preserving transformations for general polynomial system matrices.Internat. J. Control 52 (1990), 1-14. MR 1061020 |
Reference:
|
[4] N. P. Karampetakis, A. I. G. Vardulakis: Generalized state space system matrix equivalents of a Rosenbrock system matrix.IMA J. Control Inform. 10 (1993), 323-344. Zbl 0807.93009, MR 1376225 |
Reference:
|
[5] N. P. Karampetakis A. C. Pugh A. I. G. Vardulakis, G. E. Hayton: Generalized state space representations for linear multivariable systems.In: Proceedings of the IEEE Mediterranean Symposium on New Directions in Control Theory and Applications, Chania 1994, pp. 209-216. |
Reference:
|
[6] H. H. Rosenbrock: State Space and Multivariable Theory.Nelson, London 1970. Zbl 0246.93010, MR 0325201 |
Reference:
|
[7] H. H. Rosenbrock, A. C. Pugh: Contributions to a hierarchical theory of systems.Internat. J. Control 19 (1974), 845-867. Zbl 0286.93002, MR 0359888 |
Reference:
|
[8] A. I. G. Vardulakis: On the transformation of a polynomial matrix model of a linear multivariable system to generalized state space form.In: Proceedings of the 30th IEEE Conference on Decision and Control, Brighton 1991. |
Reference:
|
[9] G. C. Verghese: Infinite-frequency Behavior in Generalized Dynamical Systems.Ph. D. Dissertation, Stanford University, Stanford 1978. |
. |