[1] S. Ikeda:
Continuity and characterization of Shannon-Wiener information measure for continuous probability distributions. Ann. Inst. Statist. Math. 11 (1959), 131-144.
MR 0114682 |
Zbl 0125.09301
[2] M. Janžura T. Koski, A. Otáhal: Minimum entropy of error principle in estimation. Inform. Sci., to appear.
[3] M. Janžura T. Koski, A. Otáhal: Minimum entropy of error principle in estimation: a short survey. In: Proceedings of 6th Joint Swedish-Russian Internat. Workshop on Inform. Theory, Moelle 1993, pp. 429-431.
[4] A. Otáhal:
Finiteness and Continuity of Differential Entropy. Asymptotic Statistics. In: Procee lings of 5th Prague Symposium on Asymptotic Statistics (P. Mandl and M. Huskova, eds.), Physica-Verlag, Heidelberg 1993, pp. 415-419.
MR 1311960
[5] I. Vajda:
Theory of Statistical Inference and Information. Kluwer, Dodrecht-Boston-London 1989.
Zbl 0711.62002
[6] H. L. Weidemann, E. B. Stear:
Entropy analysis of parameter estimation. Inform, and Control 14 (1969), 493-506.
MR 0246699 |
Zbl 0212.23301
[7] H. L. Weidemann, E. B. Stear:
Entropy analysis of estimation systems. IEEE Trans. Inform. Theory 16 (1970), 264-270.
MR 0272531