Previous |  Up |  Next

Article

Title: Minimum entropy of error estimate for multi-dimensional parameter and finite-state-space observations (English)
Author: Otáhal, Antonín
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 31
Issue: 4
Year: 1995
Pages: 331-335
.
Category: math
.
MSC: 62B10
MSC: 62F10
MSC: 94A17
idZBL: Zbl 0857.62003
idMR: MR1357347
.
Date available: 2009-09-24T18:56:12Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/124683
.
Reference: [1] S. Ikeda: Continuity and characterization of Shannon-Wiener information measure for continuous probability distributions.Ann. Inst. Statist. Math. 11 (1959), 131-144. Zbl 0125.09301, MR 0114682
Reference: [2] M. Janžura T. Koski, A. Otáhal: Minimum entropy of error principle in estimation.Inform. Sci., to appear.
Reference: [3] M. Janžura T. Koski, A. Otáhal: Minimum entropy of error principle in estimation: a short survey.In: Proceedings of 6th Joint Swedish-Russian Internat. Workshop on Inform. Theory, Moelle 1993, pp. 429-431.
Reference: [4] A. Otáhal: Finiteness and Continuity of Differential Entropy. Asymptotic Statistics.In: Procee lings of 5th Prague Symposium on Asymptotic Statistics (P. Mandl and M. Huskova, eds.), Physica-Verlag, Heidelberg 1993, pp. 415-419. MR 1311960
Reference: [5] I. Vajda: Theory of Statistical Inference and Information.Kluwer, Dodrecht-Boston-London 1989. Zbl 0711.62002
Reference: [6] H. L. Weidemann, E. B. Stear: Entropy analysis of parameter estimation.Inform, and Control 14 (1969), 493-506. Zbl 0212.23301, MR 0246699
Reference: [7] H. L. Weidemann, E. B. Stear: Entropy analysis of estimation systems.IEEE Trans. Inform. Theory 16 (1970), 264-270. MR 0272531
.

Files

Files Size Format View
Kybernetika_31-1995-4_2.pdf 459.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo