Previous |  Up |  Next

Article

Title: Rank tests for scale: Hájek's influence and recent developments (English)
Author: Witting, Hermann
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 31
Issue: 3
Year: 1995
Pages: 269-291
.
Category: math
.
MSC: 62G10
idZBL: Zbl 0851.62032
idMR: MR1337981
.
Date available: 2009-09-24T18:55:29Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/124716
.
Reference: [1] K. Behnen: Asymptotic optimality and ARE of certain rank-order tests under contiguity.Ann. Math. Statist. 42 (1971), 325-329. Zbl 0224.62019, MR 0275593
Reference: [2] K. Behnen, G. Neuhaus: Rank Tests with Estimated Scores and Their Application.Teubner, Stuttgart 1989. Zbl 0692.62041, MR 1003116
Reference: [3] P. J. Bickel, E. L. Lehmann: Descriptive statistics for nonparametric models IV. Spread.In: Contributions to Statistics, The Hájek Memorial Volume (J. Jurečková, ed.), Academia, Prague 1979, pp. 33-40. Zbl 0415.62015, MR 0561256
Reference: [4] H. U. Burger: Nichtparametrische Tests für Zweistichproben-Dispersionsmodelle.Ph.D. Dissertation, Freiburg i.Br. 1991. Zbl 0746.62049
Reference: [5] H. U. Burger: Dispersion orderings with applications to nonparametric tests.Statist. Probab. Lett. 16 (1993), 1-9. Zbl 0764.62041, MR 1208492
Reference: [6] H. U. Burger: Nonparametric tests for two-sample dispersion problems: Problems with known dispersion centers.Nonparametric Statistics 2 (1993), 249-269. MR 1241533
Reference: [7] H. U. Burger U. Mülller-Funk, H. Witting: On locally optimal nonparametric tests.Methods and Models of Operations Research 56 (1992), 163-184. MR 1155838
Reference: [8] J. V. Deshpande, K. Kusum: A test for the nonparametric two-sample scale problem.Austral. J. Statist. 26 (1984), 16-24. Zbl 0555.62038, MR 0746012
Reference: [9] B. S. Duran: A survey of nonparametric tests for scale.Comm. Statist. Theory Methods A5 (1976), 1287-1312. Zbl 0362.62044, MR 0445707
Reference: [10] J. Hájek: Asymptotically most powerful rank-order tests.Ann. Math. Statist. 33 (1962), 1124-1147. MR 0143304
Reference: [11] J. Hájek: Miscellaneous problems of rank test theory.In: Nonparametric Technics (M.L. Puri, ed.), Cambridge University Press 1970, pp. 3-17. MR 0279947
Reference: [12] J. Hájek, Z. Šidák: Theory of Rank Tests.Academic Press, New York 1967. MR 0229351
Reference: [13] W. Hoeffding: 'Optimum' nonparametric tests.In: Proc. of the Second Berkeley Symposium on Mathematical Statistics and Probability (J. Neyman, ed.), Berkeley University Press 1952, pp. 83-92. MR 0044799
Reference: [14] J. Jurečková: Asymptotic linearity of a rank statistic in regression parameter.Ann. Math. Statist. 40 (1969), 1889-1900. MR 0248931
Reference: [15] J. Jurečková: Nuisance medians in rank testing scale.In: Contributions to Statistics, The Hajek Memorial Volume (J. Jurečková, ed.), Academia, Prague 1979, pp. 109-117. MR 0561264
Reference: [16] T. Kamae U. Krengel, G. L. O'Brien: Stochastic inequalities on partially ordered spaces.Ann. Probab. 5 (1977), 899-912. MR 0494447
Reference: [17] E. L. Lehmann: Testing Statistical Hypotheses.Second edition. Wiley, New York 1986. Zbl 0608.62020, MR 0852406
Reference: [18] L. E. Moses: Rank tests of dispersion.Ann. Math. Statist. 34 (1963), 973-983. Zbl 0203.21104, MR 0154370
Reference: [19] U. Müller-Funk F. Pukelsheim, H. Witting: Locally most powerful tests for two-sided hypotheses.In: Proc. 4th Pannonian Symp. on Math. Statist. (F. Konecny et al., eds.), Akademia Budapest 1983, pp. 31-56. MR 0851017
Reference: [20] J. Neyman: Optimal asymptotic tests of composite statistical hypotheses.In: Probability and Statistics; The Harald Cramer Volume (U. Grenander, ed.), Wiley, New York 1959, pp. 213-234. Zbl 0104.12602, MR 0112201
Reference: [21] J. Pfanzagl: Contributions to a General Asymptotic Statistical Theory.(Lecture Notes in Statist. 13), Springer, New York 1982. Zbl 0512.62001, MR 0675954
Reference: [22] H. Raghavachari: The two-sample scale problem when locations are unknown.Ann. Math. Statist. 36 (1965), 1236-1242. Zbl 0147.18701, MR 0178538
Reference: [23] W. Schäfer: Nicht-parametrische Tests für Skalenmodelle im Zweistichprobenproblem.Ph.D. Dissertation, Freiburg i.Br. 1979.
Reference: [24] H. Witting: Mathematische Statistik I: Parametrische Verfahren bei festem Stichprobenumfang.Teubner, Stuttgart 1985. Zbl 0581.62001, MR 0943833
Reference: [25] H. Witting, U. Müller-Funk: Mathematische Statistik II: Asymptotische Statistik: Parametrische Statistik und nichtparametrische Modelle.Teubner, Stuttgart 1995. MR 1363716
Reference: [26] H. Witting, U. Müller-Funk: Mathematische Statistik III: Prozeßapproximationen, Differentiationsansätze und nichtparametrische Testprobleme.Teubner, Stuttgart, in preparation. MR 1363716
.

Files

Files Size Format View
Kybernetika_31-1995-3_6.pdf 1.736Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo