Title:
|
The Hájek asymptotics for finite population sampling and their ramifications (English) |
Author:
|
Sen, Pranab Kumar |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
31 |
Issue:
|
3 |
Year:
|
1995 |
Pages:
|
251-268 |
. |
Category:
|
math |
. |
MSC:
|
60F05 |
MSC:
|
60G42 |
MSC:
|
62D05 |
idZBL:
|
Zbl 0837.62014 |
idMR:
|
MR1337980 |
. |
Date available:
|
2009-09-24T18:55:22Z |
Last updated:
|
2012-06-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/124724 |
. |
Reference:
|
[1] T.W. Anderson: A modification of the sequential probibility ratio test to reduce the sample size.Ann. Math. Statist. 31 (1960), 165-197. MR 0116441 |
Reference:
|
[2] S. K. Chatterjee, P. K. Sen: Nonparametric tests for the bivariate two-sample location problem.Calcutta Statist. Assoc. Bulł. 13 (1964), 18-58. MR 0192606 |
Reference:
|
[3] J. L. Doob: Heuristic approach to the Kolmogorov-Smirnov theorems.Ann. Math. Statist. 20 (1949), 393-403. Zbl 0035.08901, MR 0030732 |
Reference:
|
[4] J. Dupačová: A note on rejective sampling.In: Contributions to Statistics (J. Hájek Memorial Volume), (J. Jurečková, ed.), Academia, Prague and Reidel, Dordrecht 1979, pp. 72-78. MR 0561260 |
Reference:
|
[5] J. Hájek: Optimum strategy and other problems in probabiłity sampling.Časopis pro pěstování mat. 84 (1959), 387-423. MR 0121897 |
Reference:
|
[6] J. Hájek: Some extensions of the Wald-Wolfowitz-Noether theorem.Ann. Math. Statist. 32 (1961), 506-523. MR 0130707 |
Reference:
|
[7] J. Hájek: Asymptotically most powerful rank order tests.Ann. Math. Statist. 33 (1962), 1124-1147. MR 0143304 |
Reference:
|
[8] J. Hájek: Asymptotic theory of rejective sampling with varying probabilities from a finite population.Ann. Math. Statist. 35 (1964), 1491-1523. MR 0178555 |
Reference:
|
[9] J. Hájek: Extensions of the Kolmogorov-Smirnov tests to regression alternatives.In: Proc. Bernoulli-Bayes-Laplace Seminar, Berkeley (L. LeCam, ed.), Univ. of Calif. Press 1965, pp. 45-60. MR 0198622 |
Reference:
|
[10] J. Hájek: Asymptotic normality of simple linear rank statistics under alternatives.Ann. Math. Statist. 39 (1968), 325-346. MR 0222988 |
Reference:
|
[11] J. Hájek: Asymptotic theory of sampling with varying probabilities without replacement.In: Proc. Prague Symp. Asymp. Statist. 1973, pp. 127-138. MR 0400487 |
Reference:
|
[12] J. Hájek: Sampling from a Finite Population.Marcel Dekker, New York 1981. MR 0627744 |
Reference:
|
[13] J. Hájek, A. Rényi: Generalization of an inequality of Kolmogorov.Acta. Math. Acad. Sci. Hung. 6 (1955), 281. MR 0076207 |
Reference:
|
[14] J. Hájek, Z. Šidák: Theory of Rank Tests.Academia, Prague 1967. MR 0229351 |
Reference:
|
[15] W. Hoeffding: A class of statistics with asymptotically normal distribution.Ann. Math. Statist. 19 (1948), 293-325. Zbl 0032.04101, MR 0026294 |
Reference:
|
[16] W. Hoeffding: A combinatorial central limit theorem.Ann Math. Statist. 22 (1951), 558-566. Zbl 0044.13702, MR 0044058 |
Reference:
|
[17] L. Holst: Asymptotic normality in a generalized occupancy problem.Z. Wahrsch. verw. Geb. 21 (1972), 109-120. Zbl 0213.20301, MR 0315762 |
Reference:
|
[18] S. Karlin: Inequalities for symmetric sampling plans I.Ann. Statist. 2 (1974), 1065-1094. MR 0373085 |
Reference:
|
[19] W. G. Madow: On the limiting distributions of estimates based on samples from finite universes.Ann. Math. Statist. 19 (1948), 535-545. Zbl 0037.08602, MR 0029136 |
Reference:
|
[20] H. Majumdar, P. K. Sen: Invariance principles for jackknifing U-statistics for finite population sampling and some applications.Comm. Statist. A7 (1978), 1007-1025. Zbl 0401.62067, MR 0515165 |
Reference:
|
[21] M. Motoo: On the Hoeffding's combinatorial central limit theorem.Ann. Inst. Statist. Math. 8 (1957), 145-154. Zbl 0084.13802, MR 0089560 |
Reference:
|
[22] H. K. Nandi, P. K. Sen: On the properties of U-statistics when the observations are not independent. Part II. Unbiased estimation of the parameters of a finite population.Calcutta Statist. Assoc. Bull. 12 (1963), 125-143. MR 0161418 |
Reference:
|
[23] G. E. Noether: On a theorem by Wald and Wolfowitz.Ann. Math. Statist. 20 (1949), 455-458. Zbl 0034.22601, MR 0031670 |
Reference:
|
[24] Z. Pгášková: Rate of convergence for simple estimate in the rejective sampling.In: Probability and Statistical Inference (W. Grossmann et al., eds.), Reidel, Dordrecht 1982, pp. 307-317. MR 0668227 |
Reference:
|
[25] Z. Prášková: On the probability of very large deviations for the rejective sampling.In: Asymptotic Statistics 2, Proc. 3rd Prague Symp. on Asymptotic Statistics (P. Mandl and M. Hušková, eds.), North-Holland, Amsterdam 1984, pp. 387-389. MR 0785417 |
Reference:
|
[26] Z. Prášková: On the rate of convergence in Sampford-Durbin sampling from a finite population.Statist. Decisions 2 (1984), 339-350. MR 0861388 |
Reference:
|
[27] Z. Prášková: On the convergence to the Poisson distribution in rejective sampling from a finite population.In: Probability and Mathematical Statistics with Applications (Visegrad 1985, W. Grossmann et al. eds.), Reidel, Dordrecht 1985, pp. 285-294. MR 0956706 |
Reference:
|
[28] Z. Prášková: Sampling from a finite set of random variables: The Berry-Eseen bound for the studentized mean.In: Proc. 4th Prague Symp. on Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Charles University, Prague 1988, pp. 67-81. MR 1051428 |
Reference:
|
[29] Z. Prášková: A note on Sampford-Durbin sampling.Comment. Math. Univ. Carolinae 31 (1990), 367-372. MR 1077907 |
Reference:
|
[30] M. L. Puri, P. K. Sen: Nonparametric Methods in Multivariate Analysis.Wiley, New York 1971. Zbl 0237.62033, MR 0298844 |
Reference:
|
[31] B. Rosen: Asymptotic normality in a coupon collector's problem.Zeit. Wahrsch. verw. Geb. 15 (1969), 256-279. Zbl 0176.48103, MR 0266273 |
Reference:
|
[32] B. Rosen: On the coupon collectors waiting time.Ann. Math. Statist. 41 (1970), 1952-1969. MR 0268929 |
Reference:
|
[33] B. Rosen: Asymptotic theory for successive sampling with varying probabilities without replacement, I, II.Ann. Math. Statist. 43 (1972), 373-397, 748-776. Zbl 0246.60018, MR 0321223 |
Reference:
|
[34] M. R. Sampford: On sampling without replacement with unequal probabilities of selection.Biometrika 54 (1967), 499-513. MR 0223051 |
Reference:
|
[35] M. R. Sampford: A comparison of some possible methods of sampling from smallish populations, with units of unequal size.In: New Developments in Survey Sampling (N.L. Johnson and H. Smith, eds.), Wiley, New York 1969. |
Reference:
|
[36] P. K. Sen: The Hájek-Renyi inequality for sampling from a finite population.Sankhya A 32 (1970), 181-188. Zbl 0216.22002 |
Reference:
|
[37] P. K. Sen: Finite population sampling and weak convergence to a Brownian bridge.Sankya A 34 (1972), 85-90. Zbl 0252.62010, MR 0345270 |
Reference:
|
[38] P. K. Sen: Invariance principles for the coupon collector's problem: A martingale approach.Ann. Statist. 7 (1979), 372-380. Zbl 0411.60035, MR 0520246 |
Reference:
|
[39] P. K. Sen: Weak convergence of some quantile processes arising in progressively censored tests.Ann. Statist. 7 (1979), 414-431. Zbl 0405.62069, MR 0520250 |
Reference:
|
[40] P. K. Sen: Limit theorems for an extended coupon collector's problem and for successive sampling with varying probabilities.Calcutta Statist. Assoc. Bull. 29 (1980), 113-132. MR 0614168 |
Reference:
|
[41] P. K. Sen: Sequential Nonparametrics: Invariance Principles and Statistical Inference.Wiley, New York 1981. Zbl 0583.62074, MR 0633884 |
Reference:
|
[42] P. K. Sen: A renewal theorem for an urn model.Ann. Probab. 10 (1982), 838-843. Zbl 0544.60042, MR 0659553 |
Reference:
|
[43] P. K. Sen: On the asymptotic normality in sequential sampling tagging.Sankhya A 44 (1982), 352-363. MR 0705459 |
Reference:
|
[44] P. K. Sen: On permutational central limit theorems for general multivariate linear rank statistics.Sankhya A 45 (1983), 141-149. Zbl 0541.62037, MR 0748453 |
Reference:
|
[45] P. K. Sen: Asymptotics in finite population sampling.In: Handbook of Statistics, Vol. 6: Sampling (P. R. Krishnaiah and C. R. Rao, eds.), North Holland, Amsterdam 1988, pp. 291-331. MR 1020087 |
Reference:
|
[46] P. K. Sen, M. Ghosh: On bounded length sequential confidence intervals based on one-sample rank order statistics.Ann. Math. Statist. 42 (1971), 189-203. Zbl 0223.62100, MR 0279939 |
Reference:
|
[47] P. K. Sen, M. Ghosh: On strong convergence of regression rank statistics.Sankhya A 34 (1972), 335-348. Zbl 0269.62046, MR 0341741 |
Reference:
|
[48] R. J. Serfiing: Probability inequalities for the sum sampling without replacement.Ann. Statist. 2 (1974), 39-48. MR 0420967 |
Reference:
|
[49] J. A. Víšek: Asymptotic distribution of sample estimate for rejective, Sampford and successive sampling.In: Contributions to Statistics: Jaroslav Hájek Memorial Volume (J. Jurečková, ed.), Academia, Prague and Reidel, Dordrecht 1979, pp. 363-376. MR 0561274 |
Reference:
|
[50] A. Wald, J. Wolfowitz: Statistical tests based on permutations of the observations.Ann Math. Statist. 15 (1974), 358-372. MR 0011424 |
. |