Previous |  Up |  Next

Article

Title: Computational experience with improved conjugate gradient methods for unconstrained minimization (English)
Author: Lukšan, Ladislav
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 28
Issue: 4
Year: 1992
Pages: 249-262
.
Category: math
.
MSC: 49M37
MSC: 65K05
MSC: 90-08
MSC: 90C30
idZBL: Zbl 0771.90090
idMR: MR1183617
.
Date available: 2009-09-24T18:32:33Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/124808
.
Reference: [1] M. Al-Bali: Descent property and global convergence of the Fletcher-Reeves method with inexact line search.IMA J. Numer. Anal. 5 (1985), 121-124. MR 0777963
Reference: [2] P. Baptist, J. Stoer: On the relation between quadratic termination and convergence properties of minimization algorithms.Part 2. Applications. Numer. Math. 28 (1977), 367-391. Zbl 0366.65028, MR 0496671
Reference: [3] P. Bjorstadt, J. Nocedal: Analysis of a new algorithm for one-dimensional minimization.Computing 22 (1979), 93-100. MR 0620386
Reference: [4] A. R. Conn N. I. M. Gould, P. L. Toint: Testing a class of methods for solving minimization problems with simple bounds on the variables.Math. Comp. 50 (1988), 399-430. MR 0929544
Reference: [5] W.C. Davidon: Variable metric method for minimization.A.E.C. Research and Development Report ANL-5990, 1959.
Reference: [6] W.C. Davidon: Optimally conditioned optimization algorithms without line searches.Math. Pro- gramming 9 (1975), 1-30. Zbl 0328.90055, MR 0383741
Reference: [7] R. S. Dembo, T. Steihaug: Truncated-Newton algorithms for large-scale unconstrained minimization.Math. Programming 26 (1983), 190-212. MR 0700647
Reference: [8] R. Fletcher: A FORTRAN subroutine for minimization by the method of conjugate gradients.Report No. AERE-R7073, Atomic Energy Research Establishment, Harwell 1972.
Reference: [9] R. Fletcher, M.J. D. Powell: A rapidly convergent descent method for minimization.Computer J. 6 (1963), 163-168. Zbl 0132.11603, MR 0152116
Reference: [10] R. Fletcher, CM. Reeves: Function minimization by conjugate gradients.Computer J. 7 (1964), 149-154. Zbl 0132.11701, MR 0187375
Reference: [11] J.C. Gilbert, and J. Nocedal: Global convergence properties of conjugate gradient methods for optimization.Report No. 1268, Institut National de Recherche en Inforrnatique et. en Automatique, 1990.
Reference: [12] A. Griewank, P. L. Toint: Partitioned variable metric updates for large structured optimization problems.Numer. Math. 39 (1982), 119-137. Zbl 0482.65035, MR 0664541
Reference: [13] M. R. Hestenes, CM. Stiefel: Methods of conjugate gradient for solving linear systems.J. Res. Nat. Bur. Standards 49 (1964), 409-436. MR 0060307
Reference: [14] Y. F. Hu, C. Storey: A Global Convergence Result for Conjugate Gradient Methods.Report No. A134, Loughborough University of Technology, 1990. MR 1131466
Reference: [15] K.M. Khoda Y. Liu, C. Storey: A Generalized Polak-Ribiére Algorithm.Report No. A128, Loughborough University of Technology, 1990.
Reference: [16] L. Lukšan: Variable Metric Methods. Unconstrained Minimization.Academia, Prague 1990. In Czech. MR 1147645
Reference: [17] L. Lukšan: Computational experience with improved variable metric methods for unconstrained minimization.Kybernetika 26 (1990), 415-431. MR 1079679
Reference: [18] J.J. Moré B.S. Garbow, K.E. Hillstrom: Testing unconstrained optimization software.ACM Trans. Math. Software 7 (1981), 17-41. MR 0607350
Reference: [19] J. Nocedal: Updating quasi-Newton matrices with limited storage.Math. Comp. 35 (1980), 773-782. Zbl 0464.65037, MR 0572855
Reference: [20] E. Polak, G. Ribiére: Note sur la convergence de methodes de directions conjugees.Revue Francaise Inform. Mech. Oper. 16-R1 (1969), 35-43. MR 0255025
Reference: [21] M.J.D. Powell: Restart procedures of the conjugate gradient method.Math. Programming 12 (1977), 241-254. MR 0478622
Reference: [22] M.J.D. Powell: Nonconvex Minimization Calculations and the Conjugate Gradient Method.Report No. DAMTP 1983/NA14, University of Cambridge, 1983. MR 0760460
Reference: [23] M.J.D. Powell: Convergence Properties of Algorithms for Nonlinear Optimization.Report No. DAMPT 1985/NA1, University of Cambridge, 1985. MR 0867680
Reference: [24] D. F. Shanno: Conditioning of quasi-Newton methods for function minimization.Math. Comp. 24 (1970), 647-656. MR 0274029
Reference: [25] D.F. Shanno: Globally convergent conjugate gradient algorithms.Math. Programming 33 (1985), 61-67. Zbl 0579.90079, MR 0809749
Reference: [26] P. L. Toint: On sparse and symmetric matrix updating subject to a linear equation.Math. Comp. 31 (1987), 954-961. MR 0455338
Reference: [27] D. Touati-Ahmed, C. Storey: Efficient hybrid conjugate gradient techniques.J. Optim. Theory Appl. 64 (1990), 379-397. Zbl 0666.90063, MR 1042002
Reference: [28] G. Zoutendijk: Nonlinear programming, computational methods.In: Integer and Nonlinear Programming (J. Abadie, ed.), North-Holland, Amsterdam 1970, pp. 93-121. Zbl 0336.90057, MR 0437081
.

Files

Files Size Format View
Kybernetika_28-1992-4_1.pdf 791.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo