Previous |  Up |  Next

Article

References:
[1] R. P. Paul: Manipulator cartesian path control. IEEE Trans. Systems Man Cybernet. 9 (1979), 702-711. Zbl 0425.93017
[2] C. S. Lin P. R. Chang, J. Y. A. Luh: Formulation and optimization of cubic polynomial joint trajectories for mechanical manipulators. In: Proc. IEEE Conf. Decision and Control 1982.
[3] M. Vukorbratovic, M. Kircanski: A method for optimal synthesis of manipulation robot trajectories. Trans. ASME Ser. G - J. Dynamic Systems, Measurement and Control 104 (1982), 188-193.
[4] M. Valášek: Energetically suboptimal and program control of industrial robots in real time. Automatizace 26 (1983), 12, 296-300. In Czech.
[5] J. E. Bobrow, S. Dubowsky: On the optimal control of robotic manipulators with actuator constraints. In: Proc. of 1983 Americal Automatic Control Conference.
[6] M. Valášek: Synthesis of optimal trajectory of industrial robots. Kybernetika 22 (1986), 5, 409-424.
[7] J. M. Hollerbach: Dynamic scaling of manipulator trajectories. Trans. ASME Ser. G. - J. Dynamic Systems, Measurement and Control 106 (1984), 102-106. Zbl 0543.93031
[8] M. Valášek: Program control of industrial robots in real time. In: Konference AUTOS 1983, Plzeň, ČSVTS ŠKODA Plzeň. In Czech.
[9] J. Hollerbach: A recursive formulation of Lagrangian manipulator dynamics. IEEE Trans. Systems Man and Cybernet. 10 (1980), 730-736. MR 0600024
[10] J. M. Brady, al.: Robot Motion: Planning and Control. MIT Press, Cambridge, Mass. 1983.
[11] R. P. Paul: Robot Manipulators: Mathematics, Programming and Control. MIT Press, Cambridge, Mass. 1981.
[12] M. Valášek: Synthesis of Optimal Trajectory of an Industrial Robot. Ph. D. Thesis, Faculty of Mechanical Engineering, Czech Technical University of Prague, Prague 1984. In Czech.
Partner of
EuDML logo