Previous |  Up |  Next

Article

Title: Minimum cut in directed planar networks (English)
Author: Janiga, Ladislav
Author: Koubek, Václav
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 28
Issue: 1
Year: 1992
Pages: 37-49
.
Category: math
.
MSC: 05C85
MSC: 90B10
MSC: 90C35
MSC: 90C60
idZBL: Zbl 0763.90084
idMR: MR1159873
.
Date available: 2009-09-24T18:29:43Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/124970
.
Reference: [1] A.V. Aho J.E. Hopcroft, J.D. Ullman: The Design and Analysis of Computer Algorithms.Addison-Wesley, Reading, Mass. 1974. MR 0413592
Reference: [2] E. W. Dijkstra: A note on two problems in connections with graphs.Numer. Math. 1 (1959), 269 - 271. MR 0107609
Reference: [3] P. van Emde Boas R. Kaas, E. Zijlstra: Design and implementation of an efficient priority queue.Math. Systems Theory 10 (1977), 99 - 127. MR 0431777
Reference: [4] L. R. Ford, D.R. Fulkerson: Flows in Networks.Princeton University Press, Princeton, N.J. 1962. Zbl 0106.34802, MR 0159700
Reference: [5] L. M. Fredman, R. E. Tarjan: Fibonacci heaps and their uses in improved network optimization algorithms.J. Assoc. Comput. Mach. 34 (1987), 596 - 615. MR 0904195
Reference: [6] L. M. Fredman, D. E. Willard: Trans-dichotomous algorithms for minimum spanning trees and shortest paths.In: Proc. 31st FOCS, 1990, pp. 719 - 725.
Reference: [7] R. Hassin, D.B. Johnson: An $O (n \log^{2}(n))$ algorithm for maximum flow in undirected planar network.SIAM J. Comput. 14 (1985), 612 - 624. Zbl 0565.90018, MR 0795934
Reference: [8] J. E. Hopcroft, R. E. Tarjan: Efficient planarity testing.J. Assoc. Comput. Mach. 21 (1974), 549 - 568. Zbl 0307.68025, MR 0359387
Reference: [9] A. Itai, Y. Shiloach: Maximum flow in planar networks.SIAM J. Comput. 8 (1979), 135 - 150. Zbl 0419.90040, MR 0529586
Reference: [10] L. Janiga, V. Koubek: A note on finding minimum cuts in directed planar network by parallel computations.Inform. Process. Lett. 21 (1985), 75 - 78. MR 0810105
Reference: [11] D.B. Johnson, S. Venkatesan: Using divide and conquer to find flows in directed planar networks in $O(n^{15}\log(n))$ time.In: Proc. 20th Annual Allerton Conf. of Communication, Control and Computing, 1982, pp. 898 - 905.
Reference: [12] K. Mehlhorn: Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness.EATCS Monographs on Theoretical Computer Science, Springer-Verlag, Berlin - Heidelberg - New York - Tokio 1984. Zbl 0556.68002, MR 0756414
Reference: [13] O. Ore: Theory of Graphs.Amer. Math. Soc. Coll. Publ., Vol. XXXVIII, Providence, R.I. 1962. Zbl 0105.35401, MR 0150753
Reference: [14] J. H. Reif: Minimum S-T cut of a planar undirected network on $O(n \log^{2} (n))$ time.In: Automata, Languages and Programming (S. Even, D. Kariv, eds., Lecture Notes in Computer Science 115), Springer-Verlag, Berlin - Heidelberg - New York - Tokio 1981, pp. 56 - 67. MR 0635129
.

Files

Files Size Format View
Kybernetika_28-1992-1_3.pdf 730.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo