Previous |  Up |  Next

Article

Title: Exact modelling of scalar 2D arrays (English)
Author: Zampieri, Sandro
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 30
Issue: 2
Year: 1994
Pages: 129-140
.
Category: math
.
MSC: 93A10
MSC: 93A30
MSC: 93B25
MSC: 93B30
idZBL: Zbl 0814.93009
idMR: MR1283490
.
Date available: 2009-09-24T18:45:39Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125002
.
Reference: [1] R. E. Kalman: On partial realizations, transfer functions and canonical forms.Acta Polytech. Scand. Math. Comput. Sci. Ser. 31 (1978), 9-32. MR 0557691
Reference: [2] J. C. Willems: Models for dynamics.Dynamics reported 2 (1988), 171-269. MR 1000978
Reference: [3] C. Heij: Exact modelling and identifiability of linear systems.Automatica 28 (1992), 325-344. Zbl 0766.93003, MR 1157004
Reference: [4] S. Sakata: Finding a minimal set of linear recurring relations capable of generating a given two-dimensional array.J. Symbolic Computat. 5 (1988), 321-337. MR 0946587
Reference: [5] S. Sakata: A Gröbner basis and a minimal polynomial set of a finite $nd$ array.(Lecture Notes in Computer Science 508, S. Sakata, ed.), Springer, Berlin 1990, pp. 280-291. MR 1123958
Reference: [6] P. Rocha: Structure and Representation of 2-D Systems.PhD Dissertation, University of Groningen, 1990.
Reference: [7] P. Rocha, J. C. Willems: Canonical computational forms for AR 2-D systems.Multidimensional Systems and Signal Processing 2 (1990), 251-278.
Reference: [8] B. Buchberger: Gröbner basis: An algorithmic method in polynomial ideal theory.In: Multidimensional Systems Theory (N. K. Bose, ed.), D. Reidel, 1985, pp. 184-232.
.

Files

Files Size Format View
Kybernetika_30-1994-2_3.pdf 681.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo