Previous |  Up |  Next

Article

Title: Bifurcations and chaos in a periodically forced prototype adaptive control system (English)
Author: Kuznetsov, Yuri A.
Author: Piccardi, Carlo
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 30
Issue: 2
Year: 1994
Pages: 121-128
.
Category: math
.
MSC: 34C23
MSC: 34H05
MSC: 93C10
MSC: 93C40
idZBL: Zbl 0800.93688
idMR: MR1283489
.
Date available: 2009-09-24T18:45:32Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125006
.
Reference: [1] B. Cyr B. Riedle, P. Kokotovic: Hopf bifurcation in an adaptive system with unmodeled dynamics.In: Proc. IFAC Workshop on Adaptive Systems in Control and Signal Processing, San Francisco, CA 1983.
Reference: [2] F. R. Rubio J. Aracil, E. F. Camacho: Chaotic motion in an adaptive control system.Internat. J. Control 42 (1985), 353-360. MR 0803945
Reference: [3] F. M. A. Salam, S. Bai: Disturbance-generated bifurcations in a simple adaptive system: simulation evidence.Systems Control Lett. 7 (1986), 269-280. Zbl 0595.93039, MR 0850444
Reference: [4] F. M. A. Salam, S. Bai: Complicated dynamics of a prototype continuous-time adaptive control system.IEEE Trans. Circuits and Systems CAS-35 (1988), 842-849. Zbl 0654.93042, MR 0947813
Reference: [5] S. Bai, F. M. A. Salam: Disturbance generated bifurcation in a prototype adaptive system with $e_1$-modification law.IEEE Trans. Automat. Control AC-33 (1988), 979-984. MR 0959029
Reference: [6] I. M. Y. Mareels, R. R. Bitmead: Bifurcation effects in robust adaptive control.IEEE Trans. Circuits and Systems CAS-35 (1988), 835-841. Zbl 0658.93050, MR 0947812
Reference: [7] P. A. Ioannou, P. V. Kokotovic: Instability analysis and improvement of robustness of adaptive control.Automatica 20 (1984), 583-594. Zbl 0548.93050, MR 0772226
Reference: [8] B. Riedle B. Cyr, P. V. Kokotovic: Disturbance instabilities in an adaptive system.IEEE Trans. Automat. Control AC-29 (1984), 822-824.
Reference: [9] V. I. Arnold: Geometrical Methods in the Theory of Ordinary Differential Equations.Springer-Verlag, New York 1983. Zbl 0507.34003, MR 0695786
Reference: [10] J. Guckenheimer, P. Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields.Springer-Verlag, New York 1983. Zbl 0515.34001, MR 0709768
Reference: [11] R. Seydel: Tutorial on continuation.Internat. J. Bifurcation and Chaos 1 (1991), 3-11. Zbl 0760.34014, MR 1104538
Reference: [12] A. I. Khibnik, Yu. A. Kuznetsov V. V. Levitin, E. V. Nikolaev: Continuation techniques and interactive software for bifurcation analysis of ODEs and iterated maps.Phys. D 62 (1993), 360-370. MR 1207433
.

Files

Files Size Format View
Kybernetika_30-1994-2_2.pdf 423.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo