Previous |  Up |  Next

Article

Title: Stirling distributions and Stirling numbers of the second kind. Computational problems in statistics (English)
Author: Hennecart, François
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 30
Issue: 3
Year: 1994
Pages: 279-288
.
Category: math
.
MSC: 05A19
MSC: 11B37
MSC: 11B73
MSC: 11Z05
MSC: 60C05
MSC: 62E15
MSC: 62F10
idZBL: Zbl 0810.62029
idMR: MR1291930
.
Date available: 2009-09-24T18:47:32Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125160
.
Reference: [1] S. Berg: Some properties and applications of the ratio of Stirling numbers of the second kind.Scand. J. Statist. 2 (1975), 91-94. MR 0386083
Reference: [2] W. W. Bleick, P. C. C. Wang: Asymptotics of Stirling numbers of the second kind.Proc. Amer. Math. Soc. 42 (1974), 575-580. (Correction, Proc. Amer. Math. Soc. 48 (1974), 518.) Zbl 0278.41034, MR 0330867
Reference: [3] Ch. Charalambides: Minimum variance unbiased estimation for a class of left- truncated discrete distributions.Sankyã Ser. A 36 (1974), 397-418. Zbl 0312.62027, MR 0386113
Reference: [4] Ch. Charalambides: The generalized Stirling and C-numbers.Sankyã Ser. A 36 (1974), 419-436. Zbl 0313.62014, MR 0386114
Reference: [5] Ch. Charalambides: The distributions of sufficient statistic of truncated generalized logarithmic series, Poisson and negative binomial distributions.Canad. J. Statist. 2 (1974), 261-275. MR 0400495
Reference: [6] Ch. Charalambides, J. Singh: A review of the Stirling numbers, their generalizations and statistical applications.Comm. Statist. Theory Methods 17 (1988), 8, 2533-2595. Zbl 0696.62025, MR 0955350
Reference: [7] L. Comtet: Advanced Combinatorics.Reidel, Dordrecht 1974. Zbl 0283.05001, MR 0460128
Reference: [8] R. C. Gupta: Distribution of the sum of decapited generalized Poisson variables.Sankyã Ser. B 36 (1974), 212-214. MR 0391342
Reference: [9] R. C. Gupta: Minimum variance unbiased estimation in a modified power series distributions and some of its applications.Comm. Statist. A -- Theory Methods 6 (1977), 977-991. MR 0518866
Reference: [10] P. N. Jani: Minimum variance unbiased estimation for some left-truncated modified power series distributions.Sankyã Ser. B 39 (1977), 258-278. Zbl 0394.62015, MR 0652703
Reference: [11] P. N. Jani: New numbers appearing in minimum variance unbiased estimation for decapited generalized, negative binomial and Poisson distributions.J. Indian Statist. Assoc. 16 (1978), 41-48. MR 0529348
Reference: [12] A. Kumar: A note on minimum variance estimators of power series distributions.Comm. Statist. (A) -- Theory Methods 9 (1980), 549-556. MR 0561555
Reference: [13] A. Kumar, P. C. Consul: Minimum variance unbiased estimation for modified power series distributions.Comm. Statist. (A) -- Theory Methods 9(A) (1980), 1261-1275. MR 0578556
Reference: [14] L. Moser, M. Wyman: Stirling numbers of the second kind.Duke Math. J. 25 (1958), 29-43. Zbl 0079.09102, MR 0091964
Reference: [15] M. Nikulin: Some recent results on chi-squared tests.Queen's Papers in Pure and Appl. Math. (1991), No. 86. Zbl 0752.62038, MR 1098501
Reference: [16] F. W. J. Olver: Asymptotics and Special Functions.Academic Press, New York 1974. Zbl 0308.41023, MR 0435697
Reference: [17] G. P. Patil: Minimum variance unbiased estimation and certain problems of additive number theory.Ann. Math. Statist., 34 (1963), 1050-1056. Zbl 0116.37203, MR 0155388
Reference: [18] J. Roy, S. K. Mitra: Unbiased minimum variance estimation in a class of discrete distributions.Sankyã 18 (1957), 371-378. Zbl 0084.14901, MR 0092320
Reference: [19] J. Singh: A note on the Stirling distribution of the second kind.Commun. Statist. 4 (1975), 753-759. Zbl 0307.62010, MR 0388609
Reference: [20] R. F. Tate, R. L. Goen: Minimum variance unbiased estimation for a truncated Poisson distribution.Ann. Math. Statist. 29 (1959), 755-765. MR 0093849
Reference: [21] N. M. Temme: Asymptotic estimates ot Stirling numbers.Stud. Appl. Math. 89 (1993), 233-243. MR 1223774
Reference: [22] V. G. Voinov: On Jani's paper on minimum variance unbiased estimation for a left-truncated modified power series distribution.Sankyã Ser. B 48 (1986), 144-150. MR 0887688
Reference: [23] V. Voinov, M. Nikulin: Unbiased Estimators and Their Applications.Kluwer Academic Publishers, Dordrecht 1993. Zbl 0832.62019, MR 1472739
Reference: [24] S. W. Joshi, C. J. Park: Minimum variance unbiased estimation for truncated power series distributions.Sankyã Ser. A 36 (1974), 305-314. MR 0386121
.

Files

Files Size Format View
Kybernetika_30-1994-3_8.pdf 707.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo