Previous |  Up |  Next

Article

Title: On Bather's stochastic approximation algorithm (English)
Author: Schwabe, Rainer
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 30
Issue: 3
Year: 1994
Pages: 301-306
.
Category: math
.
MSC: 62L20
idZBL: Zbl 0810.62077
idMR: MR1291932
.
Date available: 2009-09-24T18:47:47Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125170
.
Reference: [1] J. A. Bather: Stochastic approximation: A generalisation of the Robbins-Monro procedure.In: Proc. Fourth Prague Symp. Asymptotic Statistics, Charles Univ. Prague, August 29-September 2, 1988 (P. Mandl and M. Hušková, eds.), Charles Univ., Prague 1989, pp. 13-27. MR 1051424
Reference: [2] J. R. Blum: Approximation methods which converge with probability one.Ann. Math. Statist. 25 (1954), 382-386. Zbl 0055.37806, MR 0062399
Reference: [3] K. L. Chung: On a stochastic approximation method.Ann. Math. Statist. 25 (1954), 463-483. Zbl 0059.13203, MR 0064365
Reference: [4] V. Fabian: On asymptotic normality in stochastic approximation.Ann. Math. Statist. 39 (1968), 1327-1332. Zbl 0176.48402, MR 0231429
Reference: [5] G. Kersting: Almost sure approximation of the Robbins-Monro process by sums of independent random variables.Ann. Probab. 5 (1977), 954-965. Zbl 0374.62082, MR 0494741
Reference: [6] L. Ljung: Strong convergence of a stochastic approximation algorithm.Ann. Statist. 6 (1978), 680-696. Zbl 0402.62060, MR 0464516
Reference: [7] B. T. Polyak: New method of stochastic approximation type.Automat. Remote Control 51 (1990), 937-946. Zbl 0737.93080, MR 1071220
Reference: [8] H. Robbins, S. Monro: A stochastic approximation method.Ann. Math. Statist. 22 (1951), 400-407. Zbl 0054.05901, MR 0042668
Reference: [9] D. Ruppert: Almost sure approximations to the Robbins-Monro and Kiefer-Wolfowitz processes with dependent noise.Ann. Probab. 10 (1982), 178-187. Zbl 0485.62083, MR 0637384
Reference: [10] D. Ruppert: Efficient Estimators from a Slowly Convergent Robbins-Monro Process.Technical Report No. 781, School of Operations Research and Industrial Engineering, Cornell Univ. Ithaca 1988.
Reference: [11] D. Ruppert: Stochastic approximation.In: Handbook of Sequential Analysis. (B. K. Ghosh and P. K. Sen, eds.), Marcel Dekker, New York 1991, pp. 503-529. MR 1174318
Reference: [12] J. Sacks: Asymptotic distribution of stochastic approximation procedures.Ann. Math. Statist. 29 (1958), 373-405. Zbl 0229.62010, MR 0098427
Reference: [13] R. Schwabe: Strong representation of an adaptive stochastic approximation procedure.Stochastic Process. Appl. 23 (1986), 115-130. Zbl 0614.62107, MR 0866290
Reference: [14] R. Schwabe: Stability results for smoothed stochastic approximation procedures.Z. Angew. Math. Mech. 73 (1993), 639-643. Zbl 0793.65110, MR 1237850
Reference: [15] J. H. Venter: An extension of the Robbins-Monro procedure.Ann. Math. Statist. 38 (1967), 181-190. Zbl 0158.36901, MR 0205396
Reference: [16] H. Walk: Foundations of stochastic approximation.In: Stochastic Approximation and Optimization of Random Systems, DMV Seminar Blauberen, May 28-June 4, 1989 (L. Jung, G. Pflug and H. Walk, eds.), DMV Seminar, Vol. 17, Birkhäuser, Basel 1992, pp. 1-51.
.

Files

Files Size Format View
Kybernetika_30-1994-3_10.pdf 439.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo