Title:
|
Singular finite horizon full information $\cal H^\infty$ control via reduced order Riccati equations (English) |
Author:
|
Amato, Francesco |
Author:
|
Pironti, Alfredo |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
31 |
Issue:
|
6 |
Year:
|
1995 |
Pages:
|
601-611 |
. |
Category:
|
math |
. |
MSC:
|
90D25 |
MSC:
|
93B36 |
idZBL:
|
Zbl 0863.93026 |
idMR:
|
MR1374148 |
. |
Date available:
|
2009-09-24T18:59:09Z |
Last updated:
|
2012-06-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/125269 |
. |
Reference:
|
[1] F. Amato, A. Pironti: A note on singular zero-sum linear quadratic differential games.In: Proceedings of the 33rd IEEE Conference or. Decision and Control, Orlando 1994. |
Reference:
|
[2] T. Basar, G. J. Olsder: Dynamic Noncooperative Game Theory.Academic Press, New York 1989. MR 1311921 |
Reference:
|
[3] S. Butman: A method for optimizing control-free costs in systems with linear controllers.IEEE Trans. Automat. Control 13 (1968), 554-556. MR 0238585 |
Reference:
|
[4] J. W. Helton M. L. Walker, W. Zhan: ${\cal H}^\infty$ control using compensators with access to the command signals.In: Proceedings of the 31st Conference on Decision and Control, Tucson 1992. |
Reference:
|
[5] D. J. N. Limebeer B. D. O. Anderson P. P. Khargonekar, M. Green: A game theoretic approach to ${\cal H}^\infty$ control for time-varying systems.SIAM J. Control Optim. 30 (1992), 262-283. MR 1149068 |
Reference:
|
[6] R. Ravi K. M. Nagpal, P. P. Khargonekar: ${\cal H}^\infty$ control of linear time-varying systems: a state space approach.SIAM J. Control Optim. 29 (1991), 1394-1413. MR 1132188 |
Reference:
|
[7] J. L. Speyer, D. H. Jacobson: Necessary and sufficient condition for optimality for singular control problem.J. Math. Anal. Appl. 33 (1971). MR 0272469 |
Reference:
|
[8] A. A. Stoorvogel, H. Trentelman: The quadratic matrix inequality in singular ${\cal H}^\infty$ control with state feedback.SIAM J. Control Optim. 28 (1990), 1190-1208. MR 1064725 |
Reference:
|
[9] G. Tadmor: Worst-case design in time domain: the maximum principle and the standard ${\cal H}^\infty$ problem.Math. Control Signals Systems 3 (1990), 301-324. MR 1066375 |
. |