[1] E. Asplund R. T. Rockafellar:
Gradients of convex functions. Trans. Amer. Math. Society 189, (1969), 443-467.
MR 0240621
[2] I. Ekeland R. Temam:
Analyse Convexe et Problèmes Variationnels. Dunod, Paris 1974.
MR 0463993
[3] N. Eldin: A report on the convex feedback method with applications. Proc. 2nd IFAC/IFIP Symposium Optimization Methods (Applied Aspscts), Pergamon Press, Oxford 1979.
[4] T. Glad: Constrained Optimization Using Multiplier Methode with Applications to Control Problems. Lunds Tekniska Högskola Press, Lund 1976.
[5] W. Heins S. K. Mitter:
Conjugate convex functions, duality and optimal control problems I. Information Sciences 2 (1970), 211-243.
MR 0271808
[6] C. Lemarechal:
An Algorithm for minimizing convex functions. Information Processing 74, Proc. of ths IFIP Congress 1974. North Holland, Amsterdam.
MR 0441343 |
Zbl 0297.65041
[7] C. Lemarechal:
Nondifferentiable optimization, subgradient and $\epsilon$-subgradient methods. Lecture Notes: Numerical Methods in Optimization and Opsrations Research. Springer-Verlag, Berlin 1975.
MR 0496691
[8] D. E. Luenbsrger: Optimization by Vector Space Methods. J. Wiley and Sons, N. Y. 1968.
[9] J. J. Moreau:
Proximité et dualité dans un espace Hilbertien. Bull. Soc. Math. France 93 (1965), 273-299.
MR 0201952 |
Zbl 0136.12101
[10] J. V. Outrata: A multiplier method for convex optimal control problems. Proc. 2nd IFAC/IFIP Symposium Optimization Methods (Applied Aspects), Pergamon Press, Oxford 1979.
[11] J. V. Outrata:
On the differentiability in dual optimal control problems. Math. Operationsforsch. Statist., Ser. Optimization 10 (1979), 527-540.
MR 0568630 |
Zbl 0435.49036
[12] R. T. Rockafellar:
Integrals which are convex functionals. Pac. J. of Math. 24 (1968), 525-539.
MR 0236689 |
Zbl 0159.43804
[13] R. T. Rockafellar:
Conjugate convex functions in optimal control and the calculus of variations. J. of Math. Anal, and Appl. 32 (1970), 174-222.
MR 0266020 |
Zbl 0218.49004
[14] R. T. Rockafellar:
A dual approach to solving nonlinear programming problems by unconstrained optimization. Math. Programming 5 (1973), 354-373.
MR 0371416 |
Zbl 0279.90035
[15] R. T. Rockafellar:
The multiplier method of Hestens and Powell applied to convex programming. J. Optimiz. Theory and Appl. 12 (1973), 555-562.
MR 0334953
[16] R. T. Rockafellar:
Conjugate Duality and Optimization. SIAM/CBMS monograph series No 16, SIAM Publications, 1974.
MR 0373611 |
Zbl 0296.90036
[17] R. D. Rupp:
A method for solving a quadratic optimal control problem. J. Optimiz. Theory and Appl. 9 (1972), 251-264.
MR 0301597
[18] R. D. Rupp:
A nonlinear optimal control minimization technique. Trans. AMS 775 (1973), 357-381.
MR 0322645 |
Zbl 0273.49049
[19] T. Tanino H. Nakayama Y. Sawaragi:
Multiplier functions and duality for non-linear programmes having a set constraint. Ing. J. Syst. Sci. 9 (1978), 467-481.
MR 0496703
[20] A. P. Wierzbicki S. Kurcyusz:
Projection on a cone, penalty functionals and duality theory for problems with inequality constraints in Hilbert space. SIAM J. Contr. and Optimiz. 75 (1977), 25-56.
MR 0438720
[21] P. Wolfe:
A method of conjugate subgradients for minimizing nondifferentiable functions. Math. Programming Study 3 (1975), 145-173.
MR 0448896 |
Zbl 0369.90093