[1] A. O. Aboutalib M. S. Murphy, L. M. Silverman: Digital restoration of images degraded by general motion. IEEE Trans. Automat. Control 22 (1977), 294-302.
[2] D. L. Angwin, H. Kaufman:
Image restoration using reduced order models. Signal Process. 16 (1989), 21-28.
MR 0988902
[3] M. R. Azimi-Sadjadi: Estimation and identification for 2-D block Kalman filtering. IEEE Trans. Signal Process. 39 (1991), 1885-1889.
[4] M. R. Azimi-Sadjadi, P. W. Wong: Two-dimensional block Kalman filtering for image restoration. IEEE Trans. Acoust. Speech Signal Process. 35 (1987), 1736-1749.
[5] A. E. Çetin, A. M. Tekalp:
Robust reduced update Kalman filter. IEEE Trans. Circuits and Systems 37 (1990), 155-156.
MR 1032419
[6] C. H. Chen: Adaptive image filtering. In: Proceedings of IEEE International Conference on Pattern Recognition and Image Processing 1979, pp. 32-37.
[7] A. Habibi: Two-dimensional Bayesian estimate of images. Proceedings of the IEEE 60 (1972), 878-883.
[8] T. Kaczorek: Decomposition of 2-D system into 1-D systems in time and frequency domains. In: Preprints of Systems Modelling and Simulation -- SMS '88 (L. Carotenuto, ed.), Cetraro, Italy 1988, pp. 233-237,
[9] H. Kauffman J. W. Woods S. Dravida, A. M. Tekalp: Estimation and identification of two-dimensional images. IEEE Trans. Automat. Control 28 (1983), 745-756.
[10] J. Klamka:
Controllability of M-dimensional systems. Foundations of Control Engineering 8 (1983), 65-74.
MR 0739607
[11] J. Kurek:
The general state-space model for a two-dimensional linear digital system. IEEE Trans. Automat. Control 30 (1985), 600-602.
MR 0789338 |
Zbl 0561.93034
[12] W. Marszalek:
Optimal estimation in two-dimensional discrete systems. Bull. Polish Acad. Sci. Tech. Sci. 36 (1988), 367-373.
Zbl 0699.93090
[13] N. E. Nasi, T. Assefi: Bayesian recursive image estimation. IEEE Trans. Comput. 21 (1972), 734-738.
[14] W. A. Porter, J. L. Aravena:
State estimation in discrete m-D systems. IEEE Trans. Automat. Control 31 (1986), 280-283.
MR 0825886 |
Zbl 0593.93055
[15] M. Šebek:
2-D Kalman-Bucy filtering problem: 2-D polynomial approach. In: New Trends in Systems Theory (G. Conte, A. M. Perdon and B. Wyman, eds.), Progress in Systems and Control Theory, 1990, Birkhäuser, Boston--Basel--Berlin, pp. 660-667.
MR 1125159
[16] B. R. Suresh, B. A. Shenoi: New results in two-dimensional Kalman filtering with applications to image restoration. IEEE Trans. Circuits and Systems 28 (1981), 307-319.
[17] J. W. Woods, V. K. Ingle:
Kalman filtering in two dimensions: Further results. IEEE Trans. Acoust. Speech Signal Process. 29 (1981), 188-196.
MR 0609808 |
Zbl 0521.93061
[18] J. W. Woods, C. H. Radewan:
Kalman filtering in two dimensions. IEEE Trans. Inform. Theory 23 (1977), 473-482.
MR 0469460 |
Zbl 0361.93053
[19] Z. Wu: Multidimensional state-space model Kalman filters with application to image restoration. IEEE Trans. Acoustics Speech Signal Process. 33 (1985), 1576-1592.
[20] R. Zhang, M. P. Steenart: High speed Kalman filtering for image restoration. In: Proceedings of SPIE 1199 (W. A. Pearlman, ed.), Visual Communications and Image Processing IV, Philadelphia, Pennsylvania 1989, pp. 125-135