Previous |  Up |  Next

Article

Title: Optimal reconstruction of state vector in 2-D systems (English)
Author: Dzieliński, Andrzej
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 30
Issue: 6
Year: 1994
Pages: 659-668
.
Category: math
.
MSC: 93B30
MSC: 93C30
MSC: 93E11
idZBL: Zbl 0837.93070
idMR: MR1323668
.
Date available: 2009-09-24T18:52:06Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/125493
.
Reference: [1] A. O. Aboutalib M. S. Murphy, L. M. Silverman: Digital restoration of images degraded by general motion.IEEE Trans. Automat. Control 22 (1977), 294-302.
Reference: [2] D. L. Angwin, H. Kaufman: Image restoration using reduced order models.Signal Process. 16 (1989), 21-28. MR 0988902
Reference: [3] M. R. Azimi-Sadjadi: Estimation and identification for 2-D block Kalman filtering.IEEE Trans. Signal Process. 39 (1991), 1885-1889.
Reference: [4] M. R. Azimi-Sadjadi, P. W. Wong: Two-dimensional block Kalman filtering for image restoration.IEEE Trans. Acoust. Speech Signal Process. 35 (1987), 1736-1749.
Reference: [5] A. E. Çetin, A. M. Tekalp: Robust reduced update Kalman filter.IEEE Trans. Circuits and Systems 37 (1990), 155-156. MR 1032419
Reference: [6] C. H. Chen: Adaptive image filtering.In: Proceedings of IEEE International Conference on Pattern Recognition and Image Processing 1979, pp. 32-37.
Reference: [7] A. Habibi: Two-dimensional Bayesian estimate of images.Proceedings of the IEEE 60 (1972), 878-883.
Reference: [8] T. Kaczorek: Decomposition of 2-D system into 1-D systems in time and frequency domains.In: Preprints of Systems Modelling and Simulation -- SMS '88 (L. Carotenuto, ed.), Cetraro, Italy 1988, pp. 233-237,
Reference: [9] H. Kauffman J. W. Woods S. Dravida, A. M. Tekalp: Estimation and identification of two-dimensional images.IEEE Trans. Automat. Control 28 (1983), 745-756.
Reference: [10] J. Klamka: Controllability of M-dimensional systems.Foundations of Control Engineering 8 (1983), 65-74. MR 0739607
Reference: [11] J. Kurek: The general state-space model for a two-dimensional linear digital system.IEEE Trans. Automat. Control 30 (1985), 600-602. Zbl 0561.93034, MR 0789338
Reference: [12] W. Marszalek: Optimal estimation in two-dimensional discrete systems.Bull. Polish Acad. Sci. Tech. Sci. 36 (1988), 367-373. Zbl 0699.93090
Reference: [13] N. E. Nasi, T. Assefi: Bayesian recursive image estimation.IEEE Trans. Comput. 21 (1972), 734-738.
Reference: [14] W. A. Porter, J. L. Aravena: State estimation in discrete m-D systems.IEEE Trans. Automat. Control 31 (1986), 280-283. Zbl 0593.93055, MR 0825886
Reference: [15] M. Šebek: 2-D Kalman-Bucy filtering problem: 2-D polynomial approach.In: New Trends in Systems Theory (G. Conte, A. M. Perdon and B. Wyman, eds.), Progress in Systems and Control Theory, 1990, Birkhäuser, Boston--Basel--Berlin, pp. 660-667. MR 1125159
Reference: [16] B. R. Suresh, B. A. Shenoi: New results in two-dimensional Kalman filtering with applications to image restoration.IEEE Trans. Circuits and Systems 28 (1981), 307-319.
Reference: [17] J. W. Woods, V. K. Ingle: Kalman filtering in two dimensions: Further results.IEEE Trans. Acoust. Speech Signal Process. 29 (1981), 188-196. Zbl 0521.93061, MR 0609808
Reference: [18] J. W. Woods, C. H. Radewan: Kalman filtering in two dimensions.IEEE Trans. Inform. Theory 23 (1977), 473-482. Zbl 0361.93053, MR 0469460
Reference: [19] Z. Wu: Multidimensional state-space model Kalman filters with application to image restoration.IEEE Trans. Acoustics Speech Signal Process. 33 (1985), 1576-1592.
Reference: [20] R. Zhang, M. P. Steenart: High speed Kalman filtering for image restoration.In: Proceedings of SPIE 1199 (W. A. Pearlman, ed.), Visual Communications and Image Processing IV, Philadelphia, Pennsylvania 1989, pp. 125-135
.

Files

Files Size Format View
Kybernetika_30-1994-6_10.pdf 866.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo