Title:
|
On the numerical solution of implicit two-point boundary-value problems (English) |
Author:
|
Doležal, Jaroslav |
Author:
|
Fidler, Jiří |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
15 |
Issue:
|
3 |
Year:
|
1979 |
Pages:
|
(222)-230 |
. |
Category:
|
math |
. |
MSC:
|
34B15 |
MSC:
|
49M05 |
MSC:
|
65L10 |
MSC:
|
90C90 |
idZBL:
|
Zbl 0404.65049 |
. |
Date available:
|
2009-09-24T17:07:52Z |
Last updated:
|
2012-06-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/125762 |
. |
Reference:
|
[1] A. Miele R. R. Iyer: General technique for solving nonlinear, two-point boundary-value problems via the method of particular solutions.J. Optimization Theory Appl. 5 (1970), 5, 382-399. MR 0266441 |
Reference:
|
[2] A. Miele R. R. Iyer: Modified quasilinearization method for solving nonlinear, two-point boundary-value problems.J. Math. Anal. Appl. 36 (1971), 3, 674-692. MR 0288966 |
Reference:
|
[3] A. Miele S. Naqui A. V. Levy R. R. Iyer: Numerical solution of nonlinear equations and nonlinear, two-point boundary-value problems.In "Advances in Control Systems: Theory and Applications", Vol. 8, C. T. Leondes (ed.), Academic Press, New York 1971, 189-215. |
Reference:
|
[4] S. M. Roberts J. S. Shipman: On the Miele-Iyer modified quasilinearization method.J. Optimization Theory Appl. 14 (1974), 4, 381-391. MR 0356522 |
Reference:
|
[5] J. Fidler: The application of the modified quasilinearization method for the solution of continuous time boundary-value problems.Research Report No. 819. Institute of Information Theory and Automation, Prague 1977. In Czech. |
Reference:
|
[6] J. Doležal: On the modified quasilinearization method for discrete two-point boundary-value problems.Research Report No. 788, Institute of Information Theory and Automation, Prague 1977. |
Reference:
|
[7] J. Doležal: On a certain type of discrete two-point boundary-value problems arising in discrete optimal control.EQUADIFF 4 Conference, Prague, August 22-26, 1977. See also: Kybernetika 15 (1979), 3, 215-221. MR 0542177 |
Reference:
|
[8] J. Doležal J. Fidler: To the problem of numerical solution of implicit two-point boundary-value problems.Research Report No. 857, Institute of Information Theory and Automation, Prague 1978. In Czech. |
Reference:
|
[9] J. Doležal: Modified quasilinearization method for the solution of implicit, nonlinear, two-point boundary-value problems for systems of difference equations.The 5th Symposium on Algorithms ALGORITMY' 79, High Tatras, April 23-27, 1979. In Czech. |
Reference:
|
[10] M. R. Hestenes: Calculus of Variations and Optimal Control Theory.Wiley, New York 1966. Zbl 0173.35703, MR 0203540 |
Reference:
|
[11] D. G. B. Edelen: Differential procedures for systems of implicit relations and implicitly coupled nonlinear boundary-value problems.In "Numerical Methods for Differential Systems: Recent Development in Algorithm, Software, and Applications", L. Lapidus, W. E. Schiesser (eds.), Academic Press, New York 1976, 85-95. See also: In "Mathematical Models and Numerical Methods", Banach Center Publications Vol. 3, A. N. Tichonov et al. (eds.), PWN-Polish Scientific Publishers, Warszawa 1978, 289-296. MR 0458856 |
Reference:
|
[12] S. M. Roberts J. S. Shipman: Two-Point Boundary Value Problems: Shooting Methods.American Elsevier, New York 1972. MR 0323119 |
Reference:
|
[13] E. Polak: Computational Methods in Optimization: Unified Approach.Academic Press, New York 1971. MR 0282511 |
. |