Previous |  Up |  Next

Article

Title: On the numerical solution of implicit two-point boundary-value problems (English)
Author: Doležal, Jaroslav
Author: Fidler, Jiří
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 15
Issue: 3
Year: 1979
Pages: (222)-230
.
Category: math
.
MSC: 34B15
MSC: 49M05
MSC: 65L10
MSC: 90C90
idZBL: Zbl 0404.65049
.
Date available: 2009-09-24T17:07:52Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125762
.
Reference: [1] A. Miele R. R. Iyer: General technique for solving nonlinear, two-point boundary-value problems via the method of particular solutions.J. Optimization Theory Appl. 5 (1970), 5, 382-399. MR 0266441
Reference: [2] A. Miele R. R. Iyer: Modified quasilinearization method for solving nonlinear, two-point boundary-value problems.J. Math. Anal. Appl. 36 (1971), 3, 674-692. MR 0288966
Reference: [3] A. Miele S. Naqui A. V. Levy R. R. Iyer: Numerical solution of nonlinear equations and nonlinear, two-point boundary-value problems.In "Advances in Control Systems: Theory and Applications", Vol. 8, C. T. Leondes (ed.), Academic Press, New York 1971, 189-215.
Reference: [4] S. M. Roberts J. S. Shipman: On the Miele-Iyer modified quasilinearization method.J. Optimization Theory Appl. 14 (1974), 4, 381-391. MR 0356522
Reference: [5] J. Fidler: The application of the modified quasilinearization method for the solution of continuous time boundary-value problems.Research Report No. 819. Institute of Information Theory and Automation, Prague 1977. In Czech.
Reference: [6] J. Doležal: On the modified quasilinearization method for discrete two-point boundary-value problems.Research Report No. 788, Institute of Information Theory and Automation, Prague 1977.
Reference: [7] J. Doležal: On a certain type of discrete two-point boundary-value problems arising in discrete optimal control.EQUADIFF 4 Conference, Prague, August 22-26, 1977. See also: Kybernetika 15 (1979), 3, 215-221. MR 0542177
Reference: [8] J. Doležal J. Fidler: To the problem of numerical solution of implicit two-point boundary-value problems.Research Report No. 857, Institute of Information Theory and Automation, Prague 1978. In Czech.
Reference: [9] J. Doležal: Modified quasilinearization method for the solution of implicit, nonlinear, two-point boundary-value problems for systems of difference equations.The 5th Symposium on Algorithms ALGORITMY' 79, High Tatras, April 23-27, 1979. In Czech.
Reference: [10] M. R. Hestenes: Calculus of Variations and Optimal Control Theory.Wiley, New York 1966. Zbl 0173.35703, MR 0203540
Reference: [11] D. G. B. Edelen: Differential procedures for systems of implicit relations and implicitly coupled nonlinear boundary-value problems.In "Numerical Methods for Differential Systems: Recent Development in Algorithm, Software, and Applications", L. Lapidus, W. E. Schiesser (eds.), Academic Press, New York 1976, 85-95. See also: In "Mathematical Models and Numerical Methods", Banach Center Publications Vol. 3, A. N. Tichonov et al. (eds.), PWN-Polish Scientific Publishers, Warszawa 1978, 289-296. MR 0458856
Reference: [12] S. M. Roberts J. S. Shipman: Two-Point Boundary Value Problems: Shooting Methods.American Elsevier, New York 1972. MR 0323119
Reference: [13] E. Polak: Computational Methods in Optimization: Unified Approach.Academic Press, New York 1971. MR 0282511
.

Files

Files Size Format View
Kybernetika_15-1979-3_5.pdf 537.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo