Previous |  Up |  Next

Article

Title: Adaptive estimation in linear regression model. II. Asymptotic normality (English)
Author: Víšek, Jan Ámos
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 28
Issue: 2
Year: 1992
Pages: 100-119
.
Category: math
.
MSC: 62F35
MSC: 62G07
MSC: 62G20
MSC: 62G35
MSC: 62J05
MSC: 93E10
idZBL: Zbl 0792.62034
idMR: MR1169213
.
Date available: 2009-09-24T18:30:39Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125779
.
Related article: http://dml.cz/handle/10338.dmlcz/124973
.
Reference: [1] R. Beran: An efficient and robust adaptive estimator of location.Ann. Statist. 6 (1978), 292 - 313. Zbl 0378.62051, MR 0518885
Reference: [2] P. J. Bickel: The 1980 Wald Memorial Lectures - On adaptive estimation.Ann. Statist. 10 (1982), 647-671.
Reference: [3] Y. Dodge: An introduction to statistical data analysis ii-norm based.In: Statistical Data Analysis Based on the Ii-norm and Related Methods (Y. Dodge, ed.), North-Holland, Amsterdam 1987. MR 0949217
Reference: [4] J. Jurečková: Regression quantiles and trimmed least square estimator under a general design.Kybernetika 20 (1984), 345 - 357. MR 0776325
Reference: [5] F. R. Hampel E. M. Ronchetti P. J. Rousseeuw, W. A. Stahel: Robust Statistics: The Approach Based on Influence Functions.J. Wiley, New York 1986. MR 0829458
Reference: [6] G. Heimann: Adaptive und robuste Schatzer in Regression modellen.Ph.D. Dissertation, Institut fur Math. Stochastik, Universitat Hamburg 1988.
Reference: [7] R. Koenker: .A lecture read at Charles University during his visit in Pгague 1989. Zbl 0736.62060
Reference: [8] R. Koenker, G. Basset: Regгession quantiles.Econometгica 46 (1978), 33 - 50. MR 0474644
Reference: [9] H. Koul, F. DeWet: Minimum distance estimation in a linear гegression model.Ann. Statist. 11 (1983), 921 -932. MR 0707942
Reference: [10] R. A. Maronna, V. J. Yohai: Asymptotic behaviouг of general M-estimates foг гegression and scale with random carriers.Z. Wahrsch. verw. Gebiete 58 (1981), 7 - 20. MR 0635268
Reference: [11] P.J. Rousseeuw, A.M. Leroy: Robust Regression and Outlieг Detection.J. Wiley, New York 1987. MR 0914792
Reference: [12] D. Ruppert, R. J. Caгroll: Tгimmed least squaгes estimation in linear model.J. Amer. Statist. Assoc. 75 (1980), 828-838. MR 0600964
Reference: [13] A. V. Skorokhod: Limìt theoгemsfor stochastic processes.Teor. Veгoyatnost. i Pгimenen. 1 (1956), 261 - 290.
Reference: [14] C. Stein: Efficient nonpaгametric testing and estimation.In: Proc. Thiгd Berkeley Symp. Math. Statìst. Prob. 1 (1956), 187 - 196. Univ. of California Pгess, Berkeley, Calif. 1956. MR 0084921
Reference: [15] C. Stone: Adaptive maximum likelihood estimators of a location parameteг.Ann. Statist. 3 (1975), 267 - 284. MR 0362669
Reference: [16] J. Á. Víšek: What is adaptivity of regression analysis intended for?.In: Transactions of ROBUST'90, JČMF, Prague 1990, pp. 160 - 181.
Reference: [17] J. Á. Víšek: Adaptive Estimation in Lineaг Regression Model.Research Repoгt No. 1642, Institute of Information Theory and Automatiou, Czechosbvak Academy of Sciences, Prague 1990.
Reference: [18] J. Á. Víšek: Adaptive Maximum-likelihood-like Estimation in Linear Model.Research Report No. 1654, Institute of Information Theory and Automation, Czechoslovak Academy of Sciences, Prague 1990.
Reference: [19] J. Á. Víšek: Adaptive estimation in linear гegression model and test of symmetгy of гesiduals.Proceedings of the Second International Woгkshop on Model-Oriented Data Anaylsis, Saint Kyгik, Plovdiv, Bulgaria 1990 (to appeaг).
Reference: [20] J. Á. Víšek: Adaptive estimation in linear regression model.Paгt 1: Consistency. Kybernetika 28 (1992), 1,26-36. MR 1159872
.

Files

Files Size Format View
Kybernetika_28-1992-2_3.pdf 1.513Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo