Title:
|
Essential norms of a potential theoretic boundary integral operator in $L\sp 1$ (English) |
Author:
|
Král, Josef |
Author:
|
Medková, Dagmar |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
123 |
Issue:
|
4 |
Year:
|
1998 |
Pages:
|
419-436 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $G \subset\Bbb R^m$ $(m \ge2)$ be an open set with a compact boundary $B$ and let $\sigma\ge0$ be a finite measure on $B$. Consider the space $L^1(\sigma)$ of all $\sigma$-integrable functions on $B$ and, for each $f \in L^1(\sigma)$, denote by $f \sigma$ the signed measure on $B$ arising by multiplying $\sigma$ by $f$ in the usual way. $\Cal N_{\sigma}f$ denotes the weak normal derivative (w.r. to $G$) of the Newtonian (in case $m >2$) or the logarithmic (in case $n=2$) potential of $f\sigma$, correspondingly. Sharp geometric estimates are obtained for the essential norms of the operator $\Cal N_{\sigma} - \alpha I$ (here $\alpha\in\Bbb R$ and $I$ stands for the identity operator on $L^1(\sigma)$) corresponding to various norms on $L^1(\sigma)$ inducing the topology of standard convergence in the mean w.r. to $\sigma$. (English) |
Keyword:
|
single layer potential |
Keyword:
|
weak normal derivative |
Keyword:
|
essential norm |
MSC:
|
31A10 |
MSC:
|
31B10 |
MSC:
|
31B20 |
MSC:
|
31B25 |
idZBL:
|
Zbl 0936.31007 |
idMR:
|
MR1667114 |
DOI:
|
10.21136/MB.1998.125966 |
. |
Date available:
|
2009-09-24T21:33:55Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/125966 |
. |
Reference:
|
[1] T. S. Angell R. E. Kleinman J. Král: Layer potentials on boundaries with corners and edges.Časopis Pěst. Mat. 113 (1988), 387-402. MR 0981880 |
Reference:
|
[2] Yu. D. Burago V. G. Maz'ya: Some problems of potential theory and function theory for domains with nonregular boundaries.Zapiski Naučnych Seminarov LOMI 3 (1967). (In Russian.) |
Reference:
|
[3] N. Dunford J. T Schwartz W. G. Bade R. G. Barth: Linear Operators, Part I.Interscience Publishers, New York, 1958. MR 0117523 |
Reference:
|
[4] H. Federer: The Gauss-Green theorem.Trans. Amer. Math. Soc. 58 (1945), 44-76. Zbl 0060.14102, MR 0013786, 10.1090/S0002-9947-1945-0013786-6 |
Reference:
|
[5] H. Federer: Geometric Measure Theory.Springer-Verlag, 1969. Zbl 0176.00801, MR 0257325 |
Reference:
|
[6] I. Gohberg R. Markus: Some remarks on topologically equivalent norms.Izv. Mold. Fil. Akad. Nauk SSSR 10(76) (1960), 91-95. (In Russian.) |
Reference:
|
[7] J. Král: Integral Operators in Potential Theory.Lecture Notes in Mathematics vol. 823, Springer-Verlag, 1980. MR 0590244, 10.1007/BFb0091035 |
Reference:
|
[8] J. Král: Problème de Neumann faible avec condition frontière dans $L^1$.Séminaire de Théorie du Potentiel (Université Paris VI) No. 9. Lecture Notes in Mathematics 1393, Springer-Verlag, 1989, pp. 145-160. |
Reference:
|
[9] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1996), 511-547. MR 0209503, 10.2307/1994580 |
Reference:
|
[10] J. Král D. Medková: Angular limits of double layer potentials.Czechoslovak Math. J. 45 (1995), 267-292. MR 1331464 |
Reference:
|
[11] J. Král W. Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential theory.Apl. Mat. 31 (1986), 293-308. MR 0854323 |
Reference:
|
[12] V. G. Maz'ya: Boundary Integral Equations.Encyclopaedia of Mathematical Sciences 27, Analysis IV, Springer-Verlag, 1991. Zbl 0778.00012, MR 1098507 |
Reference:
|
[13] I. Netuka: Generalized Robin problem in potential theory.Czechoslovak Math. J. 22 (1970), 312-324. MR 0294673 |
Reference:
|
[14] I. Netuka: The third boundary value problem in potential theory.Czechoslovak Math. J. 22 (1972), 554-580. Zbl 0242.31007, MR 0313528 |
Reference:
|
[15] J. Neveu: Bases Mathématiques du Calcul des Probabilités.Masson et Cie, Paris, 1964. Zbl 0137.11203, MR 0198504 |
Reference:
|
[16] L. C. Young: A theory of boundary values.Proc. London Math. Soc. 14A (1965), 300-314. Zbl 0147.07802, MR 0180891 |
. |