Previous |  Up |  Next

Article

Title: Linear Stieltjes integral equations in Banach spaces (English)
Author: Schwabik, Štefan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 124
Issue: 4
Year: 1999
Pages: 433-457
Summary lang: English
.
Category: math
.
Summary: Fundamental results concerning Stieltjes integrals for functions with values in Banach spaces have been presented in \cite5. The background of the theory is the Kurzweil approach to integration, based on Riemann type integral sums (see e.g. \cite3). It is known that the Kurzweil theory leads to the (non-absolutely convergent) Perron-Stieltjes integral in the finite dimensional case. Here basic results concerning equations of the form x(t) = x(a) +\int_a^t \dd[A(s)]x(s) +f(t) - f(a) are presented on the basis of the Kurzweil type Stieltjes integration. We are looking for generally discontinuous solutions which belong to the space of Banach space-valued regulated functions in the case that $A$ is a suitable operator-valued function and $f$ is regulated. (English)
Keyword: linear Stieltjes integral equations
Keyword: generalized linear differential equation
Keyword: Banach space
Keyword: equation in Banach space
MSC: 26A39
MSC: 26A42
MSC: 34G10
MSC: 45A05
MSC: 45N05
MSC: 46N20
idZBL: Zbl 0937.34047
idMR: MR1722877
DOI: 10.21136/MB.1999.125994
.
Date available: 2009-09-24T21:39:33Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125994
.
Reference: [1] Dunford N., Schwartz J. T.: Linear Operators I..Interscience Publishers, New York, London, 1958. Zbl 0084.10402, MR 0117523
Reference: [2] Hönig, Ch. S.: Volterra-Stieltjes Integral Equations.North-Holland Publ. Comp., Amsterdam, 1975. MR 0499969
Reference: [3] Kurzweil J.: Nichtabsolut konvergente Integrale.B. G.Teubner Verlagsgesellschaft, Leipzig, 1980. Zbl 0441.28001, MR 0597703
Reference: [4] Rudin W.: Functional Analysis.McGraw-Hill Book Company, New York, 1973. Zbl 0253.46001, MR 0365062
Reference: [5] Schwabik Š.: Abstract Perron-Stieltjes integral.Math. Bohem. 121 (1996), 425-447. Zbl 0879.28021, MR 1428144
Reference: [6] Schwabik Š.: Generalized Ordinary Differential Equations.World Scientific, Singapore, 1992. Zbl 0781.34003, MR 1200241
Reference: [7] Schwabik Š., Tvrdý M., Vejvoda O.: Differential and Integral Equations.Academia & Reidel, Praha & Dordrecht, 1979. MR 0542283
.

Files

Files Size Format View
MathBohem_124-1999-4_6.pdf 3.689Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo