Previous |  Up |  Next

Article

Title: A descriptive definition of a BV integral in the real line (English)
Author: Caponetti, Diana
Author: Marraffa, Valeria
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 124
Issue: 4
Year: 1999
Pages: 421-432
Summary lang: English
.
Category: math
.
Summary: A descriptive characterization of a Riemann type integral, defined by BV partition of unity, is given and the result is used to prove a version of the controlled convergence theorem. (English)
Keyword: pseudopartition
Keyword: strong Luzin condition
Keyword: bounded variation
Keyword: Riemann type integral
Keyword: controlled convergence theorem
Keyword: ACG$^\circ$
Keyword: ACG$^\circ$
MSC: 26A39
MSC: 26A45
idZBL: Zbl 0936.26004
idMR: MR1722876
DOI: 10.21136/MB.1999.125999
.
Date available: 2009-09-24T21:39:24Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125999
.
Reference: [1] B. Bongiorno L. Di Piazza: Convergence theorems for generalized Riemann-Stieltjes integrals.Real Anal. Exchange 11 (1991-92), 339-361. MR 1147373
Reference: [2] B. Bongiorno M. Giertz W. F. Pfeffer: Some nonabsolutely convergent integrals in the real line.Boll. Un. Mat. Ital. B (7) 6 (1992), 371-402. MR 1171108
Reference: [3] B. Bongiorno W. F. Pfeffer: A concept of absolute continuity and a Riemann type integral.Comment. Math. Univ. Carolin. 33 (1992), 184-196. MR 1189651
Reference: [4] D. Caponetti V. Marraffa: An integral in the real line defined by BV partitions of unity.Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 69-82. MR 1282323
Reference: [5] J. Kurzweil J. Mawhin W. F. Pfeffer: An integral defined by approximating BV partitions of unity.Czechoslovak Math. J. 41 (1991), 695-712. MR 1134958
Reference: [6] P. Y. Lee: On ACG* functions.Real Anal. Exchange IS (1989-90), 754-759. MR 1059436
Reference: [7] W. F. Pfeffer: The Gauss-Green theorem.Adv. Math. 87 (1991), 93-147. Zbl 0732.26013, MR 1102966, 10.1016/0001-8708(91)90063-D
Reference: [8] W. F. Pfeffer: A descriptive definition of a variational integral.Proc. Amer. Math. Soc. 114 (1992), 99-106. MR 1072090, 10.1090/S0002-9939-1992-1072090-2
Reference: [9] W. F. Pfeffer: The Riemann Approach to Integration.Cambridge Univ. Press, Cambridge, 1993. Zbl 0804.26005, MR 1268404
.

Files

Files Size Format View
MathBohem_124-1999-4_5.pdf 1.950Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo