Previous |  Up |  Next

Article

Title: On a Hamiltonian cycle of the fourth power of a connected graph (English)
Author: Wisztová, Elena
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 116
Issue: 4
Year: 1991
Pages: 385-390
Summary lang: English
.
Category: math
.
Summary: In this paper the following theorem is proved: Let $G$ be a connected graph of order $p\geq 4$ and let $M$ be a matching in $G$. Then there exists a hamiltonian cycle $C$ of $G^4$ such that $E(C)\bigcap M=0$. (English)
Keyword: Hamiltonian cycle
Keyword: power of connected graph
Keyword: matching
Keyword: powers of graphs
Keyword: matching in graphs
MSC: 05C38
MSC: 05C45
MSC: 05C75
idZBL: Zbl 0752.05039
idMR: MR1146396
DOI: 10.21136/MB.1991.126033
.
Date available: 2009-09-24T20:47:32Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126033
.
Reference: [1] M. Behzad G. Chartrand L. Lesniak-Foster: Graphs & Digraphs.Prindle. Weber & Schmidt, Boston 1979. MR 0525578
Reference: [2] F. Harary: Graph Theory.Addison-Wesley, Reading, Mass., 1969. Zbl 0196.27202, MR 0256911
Reference: [3] L. Nebeský: On the existence of a 3-factor in the fourth power of a graph.Čas. pěst. mat. 105 (1980), 204-207. MR 0573113
Reference: [4] L. Nebeský: Edge-disjoint 1-factors in powers of connected graphs.Czech. Math. J. 34 (109) (1984), 499-505. MR 0764434
Reference: [5] L. Nebeský: On a 1-factor of the fourth power of a connected graph.Čas. pěst. mat. 113 (1988), 415-420. MR 0981882
Reference: [6] J. Sedláček: Introduction into the Graph Theory.(Czech). Academia nakl. ČSAV, Praha 1981.
Reference: [7] E. Wisztová: A hamiltonian cycle and a 1-factor in the fourth power of a graph.Čas. pěst. mat. 110 (1985), 403-412. MR 0820332
.

Files

Files Size Format View
MathBohem_116-1991-4_5.pdf 679.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo