Previous |  Up |  Next

Article

Title: Abstract Perron-Stieltjes integral (English)
Author: Schwabik, Štefan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 121
Issue: 4
Year: 1996
Pages: 425-447
Summary lang: English
.
Category: math
.
Summary: Fundamental results concerning Stieltjes integrals for functions with values in Banach spaces are presented. The background of the theory is the Kurzweil approach to integration, based on Riemann type integral sums (see e.g. \cite4). It is known that the Kurzweil theory leads to the (non-absolutely convergent) Perron-Stieltjes integral in the finite dimensional case. In \cite3 Ch. S. Honig presented a Stieltjes integral for Banach space valued functions. For Honig's integral the Dushnik interior integral presents the background. \endgraf It should be mentioned that abstract Stieltjes integration was recently used by O. Diekmann, M. Gyllenberg and H. R. Thieme in \cite1 and \cite2 for describing the behaviour of some evolutionary systems originating in problems concerning structured population dynamics. (English)
Keyword: bilinear triple
Keyword: Perron-Stieltjes integral
MSC: 26A39
MSC: 26A42
MSC: 28B05
idZBL: Zbl 0879.28021
idMR: MR1428144
DOI: 10.21136/MB.1996.126036
.
Date available: 2009-09-24T21:21:45Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126036
.
Reference: [1] O. Diekmann M. Gyllenberg H. R. Thieme: Perturbing semigroups by solving Stieltjes renewal equations.Differential Integral Equations 6 (1993), 155-181. MR 1190171
Reference: [2] O. Diekmann M. Gyllenberg H. R. Thieme: Perturbing evolutionary systems by step responses on cumulative outputs.Differential Integral Equations 7 (1995). To appear. MR 1325554
Reference: [3] Ch. S. Hönig: Volterra Stieltjes-Integral Equations.North-Holland Publ. Comp., Amsterdam, 1975. MR 0499969
Reference: [4] J. Kurzweil: Nichtabsolut konvergente Integrate.Teubner Verlagsgesellschaft, Leipzig, Teubner-Texte zur Mathematik Bd. 26, 1980. MR 0597703
Reference: [5] W. Rudin: Functional Analysis.McGraw-Hill Book Company, New York, 1973. Zbl 0253.46001, MR 0365062
.

Files

Files Size Format View
MathBohem_121-1996-4_8.pdf 1.033Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo