Previous |  Up |  Next

Article

Title: $\alpha$-continuous and $\alpha$-irresolute multifunctions (English)
Author: Cao, Jiling
Author: Reilly, Ivan L.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 121
Issue: 4
Year: 1996
Pages: 415-424
Summary lang: English
.
Category: math
.
Summary: Recently Popa and Noiri [10] established some new characterizations and basic properties of $\alpha$-continuous multifunctions. In this paper, we improve some of their results and examine further properties of $\alpha$-continuous and $\alpha$-irresolute multifunctions. We also make corrections to some theorems of Neubrunn [7]. (English)
Keyword: upper (lower) $\alpha$-continuous
Keyword: upper (lower) $\alpha$-irresolute
Keyword: strongly $\alpha$-closed graph
Keyword: almost compact
Keyword: almost paracompact
MSC: 54C60
MSC: 54E55
idZBL: Zbl 0879.54020
idMR: MR1428143
DOI: 10.21136/MB.1996.126038
.
Date available: 2009-09-24T21:21:36Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126038
.
Reference: [1] C. E. Aull: Paгacompact subsets.General Topology and its Relations to Modern Analysis and Algebra II. Proc. of the Symposium Prague, 1966, Academia, Praha, 1967, pp. 45-51. MR 0234420
Reference: [2] C. Berge: Topological spaces.Oliver and Boyd Ltd., 1963. Zbl 0114.38602
Reference: [3] E. Klein A. Thompson: Theory of correspondences.A Wiley-Interscience Publication. John Wiley and Sons, 1984. MR 0752692
Reference: [4] S. N. Maheshwari S. S. Thakur: On $\alpha$-irresolute functions.Tamkang J. Math. 11 (1980), 209-214. MR 0696921
Reference: [5] S. N. Maheshwari S. S. Thakur: On $\alpha$-compact spaces.Bull. Inst. Math. Acad. Sinica 13 (1985), 341-347. MR 0866569
Reference: [6] A. S. Mashhour I. A. Hasanein S. N. El-Deeb: $\alpha$-Continious and $\alpha$-open mappings.Acta Math. Hung. 41 (1983), 213-218. MR 0703734, 10.1007/BF01961309
Reference: [7] T. Neubrunn: Strongly quasi-continuous multivalued mappings.General Topology and its Relations to Modern Analysis and Algebra VI. Proc. of the Symposium, Prague, 1986, Heldermann Verlag Berlin, 1988, pp. 351-359. MR 0952621
Reference: [8] O. Njåstad: On some classes of nearly open sets.Pacific J. Math. 15 (1965), 961-970. MR 0195040, 10.2140/pjm.1965.15.961
Reference: [9] T. Noiri: On $\alpha$-continuous functions.Časopis Pěst. Mat. 109 (1984), 118-126. Zbl 0544.54009, MR 0744869
Reference: [10] V. Popa T. Noiri: On upper and lower $\alpha$-continuous multifunctions.Math. Slovaca 4З (1993), 261-265. MR 1248981
Reference: [11] I. L. Reilly M. K. Vamanamurthy: Connectedness and strong semi-continuity.Časopis Pěst. Mat. 109 (1984), 261-265. MR 0755590
Reference: [12] I. L. Reilly M. K. Vamanamurthy: On $\alpha$-continuity in topological spaces.Acta Math. Hung. 45 (1985), 27-32. MR 0779514, 10.1007/BF01955019
Reference: [13] I. L. Reilly M. K. Vamanamurthy: On $\alpha$-sets in topological spaces.Tamkang J. Math. 16 (1985), 7-11. MR 0805724
Reference: [14] M. K. Singal R. Asha: On almost M-compact spaces.Ann. Soc. Sci. Bruxelles 82 (1968), 233-242. Zbl 0183.27301, MR 0236879
Reference: [15] M. K. Singal S. P. Arya: On M-paracompact spaces.Math. Anal. 181 (1969), 119-133. MR 0246256, 10.1007/BF01350631
Reference: [16] G. T. Whyburn: Retracting multifunctions.Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 343-348. MR 0227959, 10.1073/pnas.59.2.343
.

Files

Files Size Format View
MathBohem_121-1996-4_7.pdf 737.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo