Article
Keywords:
Liouville property; regularity; regularity of weak solutions; quasilinear elliptic systems
Summary:
The aim of this paper is to show that the Liouville-type property is a sufficient and necessary condition for the regularity of weak solutions of quasilinear elliptic systems of higher orders.
References:
                        
[1] Giaquinta M., Nečas J.: 
On the regularity of weak solutions to non-linear elliptic systems of partial differential equations. J. Reine Angew. Math. 316 (19S0), 140-159. 
MR 0581329 
[2] Giaquinta M., Nečas J.: 
On the regularity of weak solutions to non-linear elliptic systems via Liouville's type property. Comm. Math. Univ. Carol. 50 (1979), 111-122. 
MR 0526152 
[3] Giusti E.: 
Regolaritá parziale delle soluzioni di sistemi ellittici quasi lineari di ordine arbitrario. Ann. Scuola Norm. Sup. Pisa 23 (1969), 115-141. 
MR 0247258 
[4] Kawohl B.: 
On Liouville theorem, continuity and Hölder continuity of weak solution to some quasilinear elliptic systems. Comm. Math. Univ. Carol. 21 (1980), 679-697. 
MR 0597758 
[5] Kufner A., Fučík S., John O.: 
Function Spaces. Academia, Prague, 1977. 
MR 0482102 
[7] Nečas J.: 
Introduction to the theory of nonlinear elliptic equations. Teubner-Text zur Mathematik, Leipzig, 1983. 
MR 0731261 
[8] Nečas J.: 
Les méthodes directes en théorie des equations elliptiques. Academia, Prague, 1967. 
MR 0227584