Previous |  Up |  Next

Article

Title: On Liouville theorem and Hölder continuity of weak solutions to some quasilinear elliptic systems of higher order (English)
Author: Balanda, Lubomír
Author: Viszus, Eugen
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 117
Issue: 4
Year: 1992
Pages: 373-392
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to show that the Liouville-type property is a sufficient and necessary condition for the regularity of weak solutions of quasilinear elliptic systems of higher orders. (English)
Keyword: Liouville property
Keyword: regularity
Keyword: regularity of weak solutions
Keyword: quasilinear elliptic systems
MSC: 35B65
MSC: 35D10
MSC: 35J45
MSC: 35J60
idZBL: Zbl 0817.35015
idMR: MR1197287
DOI: 10.21136/MB.1992.126063
.
Date available: 2009-09-24T20:55:10Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126063
.
Reference: [1] Giaquinta M., Nečas J.: On the regularity of weak solutions to non-linear elliptic systems of partial differential equations.J. Reine Angew. Math. 316 (19S0), 140-159. MR 0581329
Reference: [2] Giaquinta M., Nečas J.: On the regularity of weak solutions to non-linear elliptic systems via Liouville's type property.Comm. Math. Univ. Carol. 50 (1979), 111-122. MR 0526152
Reference: [3] Giusti E.: Regolaritá parziale delle soluzioni di sistemi ellittici quasi lineari di ordine arbitrario.Ann. Scuola Norm. Sup. Pisa 23 (1969), 115-141. MR 0247258
Reference: [4] Kawohl B.: On Liouville theorem, continuity and Hölder continuity of weak solution to some quasilinear elliptic systems.Comm. Math. Univ. Carol. 21 (1980), 679-697. MR 0597758
Reference: [5] Kufner A., Fučík S., John O.: Function Spaces.Academia, Prague, 1977. MR 0482102
Reference: [6] Meier M.: Liouville theorems for non-linear elliptic equations and systems.Manuscripta Math. 29 (1979), 207-228. MR 0545042, 10.1007/BF01303628
Reference: [7] Nečas J.: Introduction to the theory of nonlinear elliptic equations.Teubner-Text zur Mathematik, Leipzig, 1983. MR 0731261
Reference: [8] Nečas J.: Les méthodes directes en théorie des equations elliptiques.Academia, Prague, 1967. MR 0227584
.

Files

Files Size Format View
MathBohem_117-1992-4_4.pdf 2.069Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo