Previous |  Up |  Next

Article

Title: On essential norm of the Neumann operator (English)
Author: Medková, Dagmar
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 117
Issue: 4
Year: 1992
Pages: 393-408
Summary lang: English
.
Category: math
.
Summary: One of the classical methods of solving the Dirichlet problem and the Neumann problem in $\bold R^m$ is the method of integral equations. If we wish to use the Fredholm-Radon theory to solve the problem, it is useful to estimate the essential norm of the Neumann operator with respect to a norm on the space of continuous functions on the boundary of the domain investigated, where this norm is equivalent to the maximum norm. It is shown in the paper that under a deformation of the domain investigated by a diffeomorphism, which is conformal (i.e. preserves angles) on a precisely specified part of boundary, for the given norm there exists a norm on the space of continuous functions on the boundary of the deformated domain such that this norm is equivalent to the maximum norm and the essential norms of the corresponding Neumann operators with respect to these norms are the same. (English)
Keyword: reduced boundary
Keyword: interior normal in Federer’s sense
Keyword: Neumann operator
Keyword: compact operator
Keyword: Hausdorff measure
MSC: 31B20
MSC: 47B38
MSC: 47G10
idZBL: Zbl 0773.31006
idMR: MR1197288
DOI: 10.21136/MB.1992.126064
.
Date available: 2009-09-24T20:55:20Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126064
.
Reference: [AKK] T. S. Angell R. E. Kleinman J. Král: Layer potentials on boundaries with corners and edges.Casopis pest. mat. 113 (1988), 387-402. MR 0981880
Reference: [D] M. Dont E. Dontová: Invariance of the Fredholm radius of an operator in potential theory.Časopis pěst. mat. 112 (1987), 269-283. MR 0905974
Reference: [F1] H. Federer: A note on the Gauss-Green theorem.Proc. Amer. Math. Soc. 9(1958), 447-451. Zbl 0087.27302, MR 0095245, 10.1090/S0002-9939-1958-0095245-2
Reference: [F2] H. Federer: Geometric measure theory.Springer-Verlag, 1969. Zbl 0176.00801, MR 0257325
Reference: [F3] H. Federer: The Gauss-Green theorem.Trans. Amer. Math. Soc. 58 (1945), 44-76. Zbl 0060.14102, MR 0013786, 10.1090/S0002-9947-1945-0013786-6
Reference: [FF] H. Federer W. H. Fleming: Normal and integral currents.Ann. of Math. 72 (1960), 458-520. MR 0123260, 10.2307/1970227
Reference: [K1] J. Král: Integral Operators in Potential Theory.Lecture Notes in Mathematics, vol. 823, Springer Verlag, Berlin, 1980. MR 0590244, 10.1007/BFb0091035
Reference: [K2] J. Král: Flows of heat and the Fourier problem.Czechoslovak Math. J. 20 (1970), 556-597. MR 0271554
Reference: [K3] J. Král: Note on sets whose characteristic functions have signed measures for theorem partial derivatives.Časopis pěst. mat. 86 (1961), 178-194. (In Czech.) MR 0136697
Reference: [K4] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1966), 511-547. MR 0209503, 10.2307/1994580
Reference: [K5] J. Král: The Fredholm radius of an operator in potential theory.Czechoslovak Math. J. 15 (90) (1965), 565-588. MR 0190363
Reference: [KW] J. Král W. Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential theory.Aplikace Matematiky 31 (1986), 293-308. MR 0854323
Reference: [ME1] D. Medková: Invariance of the Fredholm radius of the Neumann operator.Časopis pěst. mat. 115 (1990), 147-464. MR 1054002
Reference: [ME2] D. Medková: On the convergence of Neumann series for noncompact operators.Czechoslovak Math. J. 41 (116) (1991), 3112-316. MR 1105448
Reference: [S] N. Suzuki: On the convergence of Neumann series in Banach space.Math. Ann. 220 (1976), 143-146. Zbl 0304.47016, MR 0412855, 10.1007/BF01351698
.

Files

Files Size Format View
MathBohem_117-1992-4_5.pdf 1.877Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo