Previous |  Up |  Next

Article

Title: Cardinal and ordinal arithmetics of $n$-ary relational systems and $n$-ary ordered sets (English)
Author: Karásek, Jiří
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 123
Issue: 3
Year: 1998
Pages: 249-262
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to define and study cardinal (direct) and ordinal operations of addition, multiplication, and exponentiation for $n$-ary relational systems. $n$-ary ordered sets are defined as special $n$-ary relational systems by means of properties that seem to suitably generalize reflexivity, antisymmetry, and transitivity from the case of $n=2$ or 3. The class of $n$-ary ordered sets is then closed under the cardinal and ordinal operations. (English)
Keyword: cardinal sum
Keyword: cardinal product
Keyword: ordinal sum
Keyword: ordinal product
Keyword: $n$-ary relational system
Keyword: $n$-ary ordered set
Keyword: cardinal power
Keyword: ordinal power
MSC: 03E05
MSC: 03E10
MSC: 04A05
MSC: 06A99
MSC: 08A02
idZBL: Zbl 0933.08001
idMR: MR1645434
DOI: 10.21136/MB.1998.126071
.
Date available: 2009-09-24T21:31:46Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126071
.
Reference: [1] G. Birkhoff: An extended arithmetic.Duke Math. J. 3 (1937), 311-316. Zbl 0016.38702, MR 1545989, 10.1215/S0012-7094-37-00323-5
Reference: [2] G. Birkhoff: Generalized arithmetic.Duke Math. J. V (1942), 283-302. Zbl 0060.12609, MR 0007031, 10.1215/S0012-7094-42-00921-9
Reference: [3] G. Birkhoff: Lattice Theory.Amer. Math. Soc., Providence, Rhode Island, Third Edition, 1973. MR 0227053
Reference: [4] M. M. Day: Arithmetic of ordered systems.Trans. Amer. Math. Soc. 58 (1945), 1-43. Zbl 0060.05813, MR 0012262, 10.1090/S0002-9947-1945-0012262-4
Reference: [5] V. Novák: On a power of relational structures.Czechoslovak Math. J. 35 (1985), 167-172. MR 0779345
Reference: [6] V. Novák M. Novotný: Binary and ternary relations.Math. Bohem. 117(1992), 283-292. MR 1184541
Reference: [7] V. Novák M. Novotný: Pseudodimension of relational structures.Czechoslovak Math. J. (submitted). MR 1708362
Reference: [8] J. Šlapal: Direct arithmetics of relational systems.Publ. Math. Debrecen 38 (1991), 39-48. MR 1100904
.

Files

Files Size Format View
MathBohem_123-1998-3_3.pdf 772.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo