Previous |  Up |  Next

Article

Title: Dominating functions of graphs with two values (English)
Author: Zelinka, Bohdan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 123
Issue: 3
Year: 1998
Pages: 263-270
Summary lang: English
.
Category: math
.
Summary: The $Y$-domination number of a graph for a given number set $Y$ was introduced by D. W. Bange, A. E. Barkauskas, L. H. Host and P. J. Slater as a generalization of the domination number of a graph. It is defined using the concept of a $Y$-dominating function. In this paper the particular case where $Y = \{0,1/k\}$ for a positive integer $k$ is studied. (English)
Keyword: generalization of domination number of a graph
Keyword: $Y$-dominating function of a graph
Keyword: $Y$-domination number of a graph
MSC: 05C35
MSC: 05C69
idZBL: Zbl 0933.05111
idMR: MR1645438
DOI: 10.21136/MB.1998.126073
.
Date available: 2009-09-24T21:31:55Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126073
.
Reference: [1] Dunbar J., Hedetniemi S. T., Henning M. A., Slater P. J.: Signed domination in graphs.In: Graph Theory, Combinatorics and Applications (ed. Y. Alavi, A. Schwenk). Wiley, New York, 1995, pp. 311-321. Zbl 0842.05051, MR 1405819
Reference: [2] Dunbar J., Hedetniemi S. T.: Henning M. A., McRae A.: Minus domination in graphs.Computers Math. Appl. To appear.
Reference: [3] Grinstead D. L., Slater P. J.: Fractional domination and fractional packing in graphs.Congr. Numer. 71 (1990), 153-172. Zbl 0691.05043, MR 1041627
Reference: [4] Bange D. W., Barkauskas A. E.: Host L. H., Slater P. J.: Generalized domination and efficient domination in graphs.Discrete Math. 159 (1996), 1-11. MR 1415278, 10.1016/0012-365X(95)00094-D
Reference: [5] Zelinka B.: On k-ply domatic numbers of graphs.Math. Slovaca 34 (1984), 313-318. Zbl 0602.05039, MR 0756989
.

Files

Files Size Format View
MathBohem_123-1998-3_4.pdf 502.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo