Previous |  Up |  Next

Article

Title: Partially ordered sets having selfdual system of intervals (English)
Author: Jakubík, Ján
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 123
Issue: 3
Year: 1998
Pages: 271-278
Summary lang: English
.
Category: math
.
Summary: In the present paper we deal with the existence of large homogeneous partially ordered sets having the property described in the title. (English)
Keyword: partially ordered set
Keyword: interval
Keyword: selfduality
Keyword: connectedness
MSC: 06A06
idZBL: Zbl 0934.06004
idMR: MR1645442
DOI: 10.21136/MB.1998.126074
.
Date available: 2009-09-24T21:32:04Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126074
.
Reference: [1] L. Fuchs: Partially Ordered Algebraic Systems.Pergamon Press, Oxford, 1963. Zbl 0137.02001, MR 0171864
Reference: [2] V. I. Igoshin: Lattices of intervals and lattices of convex sublattices of lattices.Ordered sets and lattices 6 (1980), 69-76. (In Russian.) MR 0945975
Reference: [3] V. I. Igoshin: Identities in interval lattices of lattices.Contributions to Lattice Theory, Coll. Math. Soc. J. Bolyai 33 (1983), 491-501. Zbl 0522.06005, MR 0724279
Reference: [4] V. I. Igoshin: On lattices with restrictions on their interval lattices.Lectures in Universal Algebra, Coll. Math. Soc. J. Bolyai 43 (1986), 209-210. Zbl 0598.06003, MR 0860266
Reference: [5] V. I. Igoshin: Algebraic characterization of interval lattices.Uspechi matem. nauk 40 (1985), 205-206. (In Russian.) Zbl 0592.06002, MR 0795195
Reference: [6] V. I. Igoshin: Interval properties of quasivarieties of lattices.XVII. Vsesoyuz. alg. konf., Kishinev, 1985, Summaries of lectures, p. 212. (In Russian.)
Reference: [7] V. I. Igoshin: Semimodularity in interval lattices.Math. Slovaca 38 (1988), 305-308. Zbl 0664.06007, MR 0978760
Reference: [8] V. I. Igoshin: Selfduality of lattices of intervals of finite lattices.International conference on algebra dedicated to the memory of A. I. Maltsev, Summaries of lectures on model theory and algebraic systems. Novosibirsk. 1989, p. 48. (In Russian.)
Reference: [9] J. Jakubík: Selfduality of the system of intervals of a partially ordered set.Czechoslovak Math. J. 41 (1991), 135-140. MR 1087633
Reference: [10] J. Jakubík J. Lihová: Systems of intervals of partially ordered sets.Math. Slovaca 46 (1996), 355-361. MR 1472629
Reference: [11] M. Kolibiar: Intervals, convex sublattices and subdirect representations of lattices.Universal Algebra and Applications, Banach Center Publ. Vol. 9. Warsaw, 1982, pp. 335-339. Zbl 0506.06003, MR 0738826
Reference: [12] J. Lihová: Posets having a selfdual interval poset.Czechoslovak Math. J. 44 (1994), 523-533. MR 1288170
Reference: [13] V. Slavík: On lattices with isomorphic interval lattices.Czechoslovak Math. J. 35 (1985), 550-554. MR 0809041
.

Files

Files Size Format View
MathBohem_123-1998-3_5.pdf 355.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo