Title:
|
Packings of pairs with a minimum known number of quadruples (English) |
Author:
|
Novák, Jiří |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
120 |
Issue:
|
4 |
Year:
|
1995 |
Pages:
|
367-377 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $E$ be an $n$-set. The problem of packing of pairs on $E$ with a minimum number of quadruples on $E$ is settled for $n<15$ and also for $n=36t+i$, $i=3$, $6$, $9$, $12$, where $t$ is any positive integer. In the other cases of $n$ methods have been presented for constructing the packings having a minimum known number of quadruples. (English) |
Keyword:
|
configuration |
Keyword:
|
packing of pairs |
Keyword:
|
quadruples |
Keyword:
|
packing of pairs with quadruples |
Keyword:
|
system of quadruples |
Keyword:
|
packing of $K_4$'s into $K_n$ |
MSC:
|
05B05 |
MSC:
|
05B40 |
idZBL:
|
Zbl 0843.05017 |
idMR:
|
MR1415084 |
DOI:
|
10.21136/MB.1995.126092 |
. |
Date available:
|
2009-09-24T21:12:59Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/126092 |
. |
Reference:
|
[1] A. E. Brouwer: Optimal packings of $K_4$'s into a $K_n$.J. Combinatorial Theory 26 (1979), 278-297. Zbl 0412.05030, MR 0535158, 10.1016/0097-3165(79)90105-5 |
Reference:
|
[2] H. Hanani: The existence and construction of balanced incomplete block design.Ann. Math. Statist. 32 (1961), 361-386. MR 0166888, 10.1214/aoms/1177705047 |
Reference:
|
[3] J. Novák: Edge-bases of complete uniform hypergraphs.Mat. čas. 24 (1974), 43-57. MR 0357242 |
Reference:
|
[4] C. Colbourn A. Rosa Š. Znám: The spectrum of maximal partial Steiner triple systems.Math. Reports Mc. Master University. 1991. |
Reference:
|
[5] P. Turán: On the theory of graphs.Colloq. Math. 3 (1955), 19-30. MR 0062416 |
. |