Previous |  Up |  Next

Article

Title: A combinatorial approach to the known projective planes of order nine (English)
Author: Knoflíček, František
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 120
Issue: 4
Year: 1995
Pages: 347-366
Summary lang: English
.
Category: math
.
Summary: A combinatorial characterization of finite projective planes using strongly canonical forms of incidence matrices is presented. The corresponding constructions are applied to known projective planes of order 9. As a result a new description of the Hughes plane of order nine is obtained. (English)
Keyword: ternary
Keyword: projective plane
Keyword: incidence matrix
Keyword: finite projective plane
Keyword: ternary ring
Keyword: system of orthogonal Latin squares
Keyword: Hall plane of order 9
Keyword: Hughes plane of order 9
MSC: 05B25
MSC: 51E15
idZBL: Zbl 0847.51005
idMR: MR1415083
DOI: 10.21136/MB.1995.126096
.
Date available: 2009-09-24T21:12:50Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126096
.
Reference: [1] Hughes D.R., Piper F.C.: Projective Planes.New York-Heidelberg-Berlin, 1973. Zbl 0267.50018, MR 0333959
Reference: [2] Pickert G.: Projektive Eben.Berlin-Göttingen-Heidelberg, 1955.
Reference: [3] Stevenson F. W.: Projective Planes.San Francisco, 1972. Zbl 0245.50022, MR 0344995
Reference: [4] Paige L. J., Wexler, Ch.: A canonical form for incidence matrices of finite projective planes and their associated Latin squares.Portugaliae Mathematica 12 (1953), 105-112. Zbl 0053.10802, MR 0060448
Reference: [5] Hall M.: Projective Planes.Trans. Amer. Math. Soc. 54 (1943), 229-277. Zbl 0060.32209, MR 0008892, 10.1090/S0002-9947-1943-0008892-4
Reference: [6] Room T.G., Kirkpatrick P.B.: Miniquaternion Geometry.Cambridge, 1971. Zbl 0203.22801
Reference: [7] Dénes J., Keedwell A.D.: Latin squares and their applications.Budapest, 1974. MR 0351850
Reference: [8] Veblen O., Wedderburn J. H. M.: Non-Desargusian and non-Pascalian geometries.Trans. AMS 8 (1907), 379-388. MR 1500792, 10.1090/S0002-9947-1907-1500792-1
Reference: [9] Knoflíček F.: On one construction of all quasifields of order 9.Comm. Math. Univ. Carolinae 27 (1986), 683-694. MR 0874662
.

Files

Files Size Format View
MathBohem_120-1995-4_2.pdf 1.622Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo