Previous |  Up |  Next

Article

Keywords:
PU-integral; partition of unity
Summary:
In this paper, we define a $\PU$-integral, i.e. an integral defined by means of partitions of unity, on a suitable compact metric measure space, whose measure $\mu$ is compatible with its topology in the sense that every open set is $\mu$-measurable. We prove that the $\PU$-integral is equivalent to $\mu$-integral. Moreover, we give an example of a noneuclidean compact metric space such that the above results are true.
References:
[1] A. M. Bruckner: Differentiation of integrals. Amer. Math. Monthly, No. 9 Supplement 78 (1971), 1-51. MR 0293044 | Zbl 0225.28002
[2] D. Caponetti, V. Marraffa: An integral in the real line defined by BV partitions of unity. Atti Semin. Mat. Fis., Univ. Modena, 42 (1994), 69-82. MR 1282323 | Zbl 0824.26004
[3] R. O. Davies, Z. Schuss: A proof that Henstock's integral includes Lebesgue's. J. London Math. Soc. (2) 2 (1970), 561-562. DOI 10.1112/jlms/2.Part_3.561 | MR 0265526 | Zbl 0197.04103
[4] G. A. Edgar: Measure, topology and fractal geometry. Springer-Verlag, 1990. MR 1065392 | Zbl 0727.28003
[5] H. Hahn, A. Rosenthal: Set functions. Albuquerque, N. Mexico, 1948. MR 0024504 | Zbl 0033.05301
[6] R. Henstock: The general theory of integration. Clarendon Press, Oxford, 1991. MR 1134656 | Zbl 0745.26006
[7] R. Henstock: Measure spaces and division spaces. Real Anal. Exchange 19 (1) (1993/94). 121-128. MR 1268837
[8] J. Jarník, J. Kurzweil: A non absolutely convergent integral which admits transformation and can be used for integration on manifolds. Czechoslovak Math. J. 35 (110) (1985), 116-139. MR 0779340
[9] J. Jarník, J. Kurzweil: A new and more powerful concept of the PU-integral. Czechoslovak Math. J. 38 (113) (1988), 8-48. MR 0925939
[10] J. Kurzweil J. Mawhin, W. Pfeffer: An integral defined by approximating BV paгtitions of unity. Czechoslovak Math. J. 41 (116) (1991), 695-712. MR 1134958
[11] W. F. Pfeffer: The divergence theorem. Trans. Amer. Math. Soc. 295 (2) (1986), 665-685. DOI 10.1090/S0002-9947-1986-0833702-0 | MR 0833702 | Zbl 0596.26007
[12] W. F. Pfeffer, Wei-Chi Yang: A note on conditionally convergent integrals. Real Anal. Exchange 17 (1991/92), 815-819. MR 1171426
[13] W. F. Pfeffer: The Riemann approach to integration. Cambridge University Pгess, 1993. MR 1268404 | Zbl 0804.26005
Partner of
EuDML logo