Title:
|
A PU-integral on an abstract metric space (English) |
Author:
|
Riccobono, Giuseppa |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
122 |
Issue:
|
1 |
Year:
|
1997 |
Pages:
|
83-95 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we define a $\PU$-integral, i.e. an integral defined by means of partitions of unity, on a suitable compact metric measure space, whose measure $\mu$ is compatible with its topology in the sense that every open set is $\mu$-measurable. We prove that the $\PU$-integral is equivalent to $\mu$-integral. Moreover, we give an example of a noneuclidean compact metric space such that the above results are true. (English) |
Keyword:
|
PU-integral |
Keyword:
|
partition of unity |
MSC:
|
26A39 |
MSC:
|
28A25 |
MSC:
|
46G12 |
idZBL:
|
Zbl 0891.28003 |
idMR:
|
MR1446402 |
DOI:
|
10.21136/MB.1997.126181 |
. |
Date available:
|
2009-09-24T21:23:09Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/126181 |
. |
Reference:
|
[1] A. M. Bruckner: Differentiation of integrals.Amer. Math. Monthly, No. 9 Supplement 78 (1971), 1-51. Zbl 0225.28002, MR 0293044 |
Reference:
|
[2] D. Caponetti, V. Marraffa: An integral in the real line defined by BV partitions of unity.Atti Semin. Mat. Fis., Univ. Modena, 42 (1994), 69-82. Zbl 0824.26004, MR 1282323 |
Reference:
|
[3] R. O. Davies, Z. Schuss: A proof that Henstock's integral includes Lebesgue's.J. London Math. Soc. (2) 2 (1970), 561-562. Zbl 0197.04103, MR 0265526, 10.1112/jlms/2.Part_3.561 |
Reference:
|
[4] G. A. Edgar: Measure, topology and fractal geometry.Springer-Verlag, 1990. Zbl 0727.28003, MR 1065392 |
Reference:
|
[5] H. Hahn, A. Rosenthal: Set functions.Albuquerque, N. Mexico, 1948. Zbl 0033.05301, MR 0024504 |
Reference:
|
[6] R. Henstock: The general theory of integration.Clarendon Press, Oxford, 1991. Zbl 0745.26006, MR 1134656 |
Reference:
|
[7] R. Henstock: Measure spaces and division spaces.Real Anal. Exchange 19 (1) (1993/94). 121-128. MR 1268837 |
Reference:
|
[8] J. Jarník, J. Kurzweil: A non absolutely convergent integral which admits transformation and can be used for integration on manifolds.Czechoslovak Math. J. 35 (110) (1985), 116-139. MR 0779340 |
Reference:
|
[9] J. Jarník, J. Kurzweil: A new and more powerful concept of the PU-integral.Czechoslovak Math. J. 38 (113) (1988), 8-48. MR 0925939 |
Reference:
|
[10] J. Kurzweil J. Mawhin, W. Pfeffer: An integral defined by approximating BV paгtitions of unity.Czechoslovak Math. J. 41 (116) (1991), 695-712. MR 1134958 |
Reference:
|
[11] W. F. Pfeffer: The divergence theorem.Trans. Amer. Math. Soc. 295 (2) (1986), 665-685. Zbl 0596.26007, MR 0833702, 10.1090/S0002-9947-1986-0833702-0 |
Reference:
|
[12] W. F. Pfeffer, Wei-Chi Yang: A note on conditionally convergent integrals.Real Anal. Exchange 17 (1991/92), 815-819. MR 1171426 |
Reference:
|
[13] W. F. Pfeffer: The Riemann approach to integration.Cambridge University Pгess, 1993. Zbl 0804.26005, MR 1268404 |
. |