Previous |  Up |  Next

Article

Title: A PU-integral on an abstract metric space (English)
Author: Riccobono, Giuseppa
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 122
Issue: 1
Year: 1997
Pages: 83-95
Summary lang: English
.
Category: math
.
Summary: In this paper, we define a $\PU$-integral, i.e. an integral defined by means of partitions of unity, on a suitable compact metric measure space, whose measure $\mu$ is compatible with its topology in the sense that every open set is $\mu$-measurable. We prove that the $\PU$-integral is equivalent to $\mu$-integral. Moreover, we give an example of a noneuclidean compact metric space such that the above results are true. (English)
Keyword: PU-integral
Keyword: partition of unity
MSC: 26A39
MSC: 28A25
MSC: 46G12
idZBL: Zbl 0891.28003
idMR: MR1446402
DOI: 10.21136/MB.1997.126181
.
Date available: 2009-09-24T21:23:09Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126181
.
Reference: [1] A. M. Bruckner: Differentiation of integrals.Amer. Math. Monthly, No. 9 Supplement 78 (1971), 1-51. Zbl 0225.28002, MR 0293044
Reference: [2] D. Caponetti, V. Marraffa: An integral in the real line defined by BV partitions of unity.Atti Semin. Mat. Fis., Univ. Modena, 42 (1994), 69-82. Zbl 0824.26004, MR 1282323
Reference: [3] R. O. Davies, Z. Schuss: A proof that Henstock's integral includes Lebesgue's.J. London Math. Soc. (2) 2 (1970), 561-562. Zbl 0197.04103, MR 0265526, 10.1112/jlms/2.Part_3.561
Reference: [4] G. A. Edgar: Measure, topology and fractal geometry.Springer-Verlag, 1990. Zbl 0727.28003, MR 1065392
Reference: [5] H. Hahn, A. Rosenthal: Set functions.Albuquerque, N. Mexico, 1948. Zbl 0033.05301, MR 0024504
Reference: [6] R. Henstock: The general theory of integration.Clarendon Press, Oxford, 1991. Zbl 0745.26006, MR 1134656
Reference: [7] R. Henstock: Measure spaces and division spaces.Real Anal. Exchange 19 (1) (1993/94). 121-128. MR 1268837
Reference: [8] J. Jarník, J. Kurzweil: A non absolutely convergent integral which admits transformation and can be used for integration on manifolds.Czechoslovak Math. J. 35 (110) (1985), 116-139. MR 0779340
Reference: [9] J. Jarník, J. Kurzweil: A new and more powerful concept of the PU-integral.Czechoslovak Math. J. 38 (113) (1988), 8-48. MR 0925939
Reference: [10] J. Kurzweil J. Mawhin, W. Pfeffer: An integral defined by approximating BV paгtitions of unity.Czechoslovak Math. J. 41 (116) (1991), 695-712. MR 1134958
Reference: [11] W. F. Pfeffer: The divergence theorem.Trans. Amer. Math. Soc. 295 (2) (1986), 665-685. Zbl 0596.26007, MR 0833702, 10.1090/S0002-9947-1986-0833702-0
Reference: [12] W. F. Pfeffer, Wei-Chi Yang: A note on conditionally convergent integrals.Real Anal. Exchange 17 (1991/92), 815-819. MR 1171426
Reference: [13] W. F. Pfeffer: The Riemann approach to integration.Cambridge University Pгess, 1993. Zbl 0804.26005, MR 1268404
.

Files

Files Size Format View
MathBohem_122-1997-1_8.pdf 869.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo