Previous |  Up |  Next

Article

Title: On formal theory of differential equations. III. (English)
Author: Chrastina, Jan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 116
Issue: 1
Year: 1991
Pages: 60-90
Summary lang: English
.
Category: math
.
Summary: Elements of the general theory of Lie-Cartan pseudogroups (including the intransitive case) are developed within the framework of infinitely prolonged systems of partial differential equations (diffieties) which makes it independent of any particular realizations by transformations of geometric object. Three axiomatic approaches, the concepts of essential invariant, subgroup, normal subgroup and factorgroups are discussed. The existence of a very special canonical composition series based on Cauchy characteristics is proved and relations to the equivalence problem, theory of geometrical objects and connection theory are briefly mentioned. (English)
Keyword: Lie-Cartan pseudogroups
Keyword: diffieties
Keyword: equivalence problem
Keyword: Cauchy characteristics
Keyword: composition series
Keyword: geometrical object
MSC: 22E65
MSC: 35A30
MSC: 58A17
MSC: 58H05
idZBL: Zbl 0728.58041
idMR: MR1100425
DOI: 10.21136/MB.1991.126196
.
Date available: 2009-09-24T20:43:07Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126196
.
Reference: [1] E. Cartan: Oeuvres complètes II.2. Paris 1953. MR 0058523
Reference: [2] E. Cartan: Oeuvres complète II.2. Paris 1953.
Reference: [3] J. Chrastina: On formal theory of differential equations I.Časopis pěst. mat. 111 (1986), 353-383. Zbl 0638.35008, MR 0871713
Reference: [4] J. Chrastina: On formal theory of differential equations II.Časopis pěst. mat. 114 (1989) 60-105. Zbl 0703.34001, MR 0990119
Reference: [5] J. Chrastina: From elementary algebra to Bäcklund transformations.Czechoslovak Math. J. 40 (1990), 239-257. Zbl 0726.58041, MR 1046292
Reference: [6] H. Goldschmidt D. Spencer: On non-linear cohomology of Lie equations I.Acta Math. 136 (1976), 103-170. MR 0445566, 10.1007/BF02392044
Reference: [7] V. W. Guillemin S. Sternberg: An algebraic model of transitive differential geometry.Bull. Amer. Math. Soc. 70 (1946), 16-47. MR 0170295
Reference: [8] V. W. Guillemin S. Sternberg: The Lewy counterexample and the local equivalence problem for G-structures.J. Diff. Geom. 1 (1967), 127-131. MR 0222800, 10.4310/jdg/1214427885
Reference: [9] T. Higa: On the isomorphic reduction of an invariant associated with a Lie pseudogroup.Comm. Math. Univ. Sancti Pauli 34 (1985), 163-175. Zbl 0602.58057, MR 0815786
Reference: [10] V. G. Kac: Simple irreducible graded Lie algebras of finite growth.(in Russian). Izvěstija Akad. Nauk 32 (1968), 1323-1367. Zbl 0222.17007, MR 0259961
Reference: [11] S. Lie: Die Grundlagen für die Theorie der unendlichen kontinuierlichen Transformationsgruppen.Ges. Abh. 6, Leipzig 1927, 310-364.
Reference: [12] P. Molino: Théorie des G-structures, le problème d'equivalence.Lecture Notes in Mathematics 588 (1977). Zbl 0357.53022, 10.1007/BFb0091884
Reference: [13] A. Nijenhuis: Natural bundles and their general properties.Differential Geometry in Honour of K. Yano, Kino Kuniya, Toki 1972, 271-277. Zbl 0246.53018, MR 0380862
Reference: [14] J. F. Pommaret: Systems of Partial Differential Equations and Lie Pseudogroups.Math. and Its Аppl. 14 (1978); Russian transl. 1983. Zbl 0418.35028, MR 0731697
Reference: [15] A. A. Rodrigues, Ngo van Que: Troisième théorème fondamental de réalization de Cartan.Аnn. Inst. Fourier 25 (1975), 251-282. 10.5802/aif.551
Reference: [16] S. Sternberg: Lectures on Differential Geometry.Prentice Hall, New Јersey 1964. Zbl 0129.13102, MR 0193578
Reference: [17] V. V. Žarinov: On the Bäcklund correspondences.(in Russian). Matematičeskij sbornik 136 (1988), 274-291.
.

Files

Files Size Format View
MathBohem_116-1991-1_5.pdf 4.290Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo