[1] S. Bloch K. Kato: 
L-functions and Tamagawa numbers of motives. In: The Grothendieck Festschrift I, Progress in Mathematics 86. Birkhäuser, Boston, Basel, Berlin, 1990, pp. 333-400. 
MR 1086888[2] H. C. Clemens: 
A scrapbook of complex curve theory. Plenum Press, New York, London, 1980. 
MR 0614289 | 
Zbl 0456.14016[4] M. Eichler: 
Quaternare quadratische Formen und die Riemannsche Vermutung für die Kongruenzzetafunktion. Arch. Math. 5 (1954), 355-366. 
DOI 10.1007/BF01898377 | 
MR 0063406[7] G. Frey: 
Links between stable elliptic curves and certain diophantine equations. Ann. Univ. Sarav. 1 (1986), 1-40. 
MR 0853387 | 
Zbl 0586.10010[9] P. Griffiths J. Harris: 
Principles of Algebraic Geometry. Wiley, New York, 1978. 
MR 0507725[10] H. Hasse: Beweis des Analogons der Riemannschen Vermutung für die Artinschen und F.K. Schmidtschen Kongruenzzetafunktionen in gewissen elliptischen Fallen. Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. (1933), 253-262.
[11] K. Ireland M. Rosen: 
A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics 84, Springer, New York, Heidelberg, Berlin, 1982. 
MR 0661047[12] V. A. Kolyvagin: Koněčnosť E(Q) i Ш(E, Q) dlja podklassa krivych Vejlja. Izv. Akad. Nauk SSSR, Ser. Mat. 52 (1988), 522-540.
[13] V. A. Kolyvagin: O gruppach Mordella-Vejlja i Šafareviča-Tejta dlja elliptičeskich krivych Vejlja. zv. Akad. Nauk SSSR, Ser. Mat. 52(1988), 1156-1180.
[14] V. A. Kolyvagin: 
Euler Systems. In: The Grothendieck Festschrift II, Progress in Mathematics 87. Birkhäuser, Boston, Basel, Berlin, 1990, pp. 435-483. 
MR 1106906 | 
Zbl 0742.14017[18] B. Mazur: 
Deforming Galois representations. Galois Groups over Q. Math. Sci. Res. Inst. Publ., vol. 16. Springer-Verlag Berlin and New York, 1989, pp. 385-437. 
DOI 10.1007/978-1-4613-9649-9_7 | 
MR 1012172[19] B. Mazur:  Letter to J.-F. Mestre (16 August 1985). 
Zbl 0588.76163[22] B. Mazur K. Ribet: 
Two-dimensional representations in the arithmetic of modular curves. In: Asterisque 196/197, S.M.F.. 1991, pp. 215-255. 
MR 1141460[23] B. Mazur A. Wiles: 
Class fields of abelian extensions of Q. Invent. Math. 76(1984), 179-330. 
MR 0742853[24] J. Nekovář: 
Values of L-functions and p-adic cohomology. In: Proceedings ECM 1992 Paris, to appear. 
MR 1341847[26] K. A. Ribet: 
On modular representations of $Gal(\overline{Q}/Q)$ arising from modular forms. Invent. Math. 100 (1990), 431-476. 
DOI 10.1007/BF01231195 | 
MR 1047143[28] K. A. Ribet: 
Report on mod l representations of $Gal(\overline{Q}/Q)$. In: Proceedings of the "Motives" conference, Seattle 1991. to appear in Proc. Symp. Pure Math. 
MR 1265566[34] G. Shimura: 
Introduction to the Arithmetic Theory of Automorphic Functions. Princeton University Press, 1971. 
MR 0314766 | 
Zbl 0221.10029[35] J. H. Silverman: 
The arithmetic of elliptic curves. Graduate Texts in Math., vol. 106, Springer, New York, 1986, 
MR 0817210 | 
Zbl 0585.14026[37] H. Weber: Lehrbuch der Algebra, III. 1908.
[38] A. Weil: 
Elliptic functions according to Eisenstein and Kronecker. Springer, New York, 1976. 
MR 0562289 | 
Zbl 0318.33004