11 Number theory
11Dxx Diophantine equations
11D41 Higher degree equations; Fermat's equation (18 articles)
-
Baruah, Priyanka; Das, Anup; Hoque, Azizul:
Complete solutions of a Lebesgue-Ramanujan-Nagell type equation.
(English).
Archivum Mathematicum,
vol. 60
(2024),
issue 3,
pp. 135-144
-
Cai, Tianxin; Zhang, Yong:
A variety of Euler's sum of powers conjecture.
(English).
Czechoslovak Mathematical Journal,
vol. 71
(2021),
issue 4,
pp. 1099-1113
-
Pezlar, Zdeněk:
Řešení diofantických rovnic rozkladem nad číselnými tělesy.
(Czech) [Solving Diophantine equations using factorization in number fields].
Pokroky matematiky, fyziky a astronomie,
vol. 66
(2021),
issue 2,
pp. 103-117
-
Hashim, Hayder R.:
Solutions of the Diophantine Equation $7X^2+Y^7=Z^2$ from Recurrence Sequences.
(English).
Communications in Mathematics,
vol. 28
(2020),
issue 1,
pp. 55-66
-
Jena, Susil Kumar:
On $x^n + y^n = \lowercase{n!} z^n$.
(English).
Communications in Mathematics,
vol. 26
(2018),
issue 1,
pp. 11-14
-
Jena, Susil Kumar:
On $X_1^4+4X_2^4=X_3^8+4X_4^8$ and $Y_1^4=Y_2^4+Y_3^4+4Y_4^4$.
(English).
Communications in Mathematics,
vol. 23
(2015),
issue 2,
pp. 113-117
-
Jena, Susil Kumar:
Method of infinite ascent applied on $-(2^p\cdot A^6)+B^3=C^2$.
(English).
Communications in Mathematics,
vol. 21
(2013),
issue 2,
pp. 173-178
-
Jena, Susil Kumar:
The method of infinite ascent applied on $A^4 \pm n B^3 = C^2$.
(English).
Czechoslovak Mathematical Journal,
vol. 63
(2013),
issue 2,
pp. 369-374
-
Pink, István; Rábai, Zsolt:
On the diophantine equation $x^2+5^k17^l=y^n$.
(English).
Communications in Mathematics,
vol. 19
(2011),
issue 1,
pp. 1-9
-
Luca, Florian; Szalay, László:
Congruent numbers with higher exponents.
(English).
Acta Mathematica Universitatis Ostraviensis,
vol. 14
(2006),
issue 1,
pp. 49-55
-
Polický, Zdeněk:
Diophantine equation $\frac{q^n-1}{q-1}=y$ for four prime divisors of $y-1$.
(English).
Commentationes Mathematicae Universitatis Carolinae,
vol. 46
(2005),
issue 3,
pp. 577-588
-
Khosravi, Amir; Khosravi, Behrooz:
On the Diophantine equation $\frac{q^n-1}{q-1}=y$.
(English).
Commentationes Mathematicae Universitatis Carolinae,
vol. 44
(2003),
issue 1,
pp. 1-7
-
Mauldin, R. Daniel:
Zobecnění Velké Fermatovy věty: Bealova domněnka a problém o cenu.
(Czech) [A generalization of Fermat's Last Theorem: The Beal conjecture and prize problem].
Pokroky matematiky, fyziky a astronomie,
vol. 43
(1998),
issue 2,
pp. 104-107
-
Agoh, Takashi:
Stickelberger subideals related to Kummer type congruences.
(English).
Mathematica Slovaca,
vol. 48
(1998),
issue 4,
pp. 347-364
-
Nekovář, Jan:
Modulární křivky a Fermatova věta.
(Czech) [Modular curves and Fermat's theorem].
Mathematica Bohemica,
vol. 119
(1994),
issue 1,
pp. 79-96
-
Skula, Ladislav:
Některé historické aspekty Fermatova problému.
(Czech) [Some historical aspects of the Fermat problem].
Pokroky matematiky, fyziky a astronomie,
vol. 39
(1994),
issue 6,
pp. 318-330
-
Ribet, Kenneth A.:
Wiles dokázal Taniyamovu hypotézu; důsledkem je Fermatova věta.
(Czech) [Wiles proves Taniyama's conjecture; Fermat's last theorem follows].
Mathematica Bohemica,
vol. 119
(1994),
issue 1,
pp. 75-78
-
Skula, Ladislav:
Systems of equations depending on certain ideals.
(English).
Archivum Mathematicum,
vol. 21
(1985),
issue 1,
pp. 23-38