[1] Adams D. R., Hedberg L. I.: 
Function Spaces and Potential Theory. Springer-Verlag, 1996. 
MR 1411441[9] Gilbarg D., Trudinger N. S.: 
Elliptic Partial Differential Equations of Second Order. Springer-Verlag, New York, 1983, Second Ed. 
MR 0737190 | 
Zbl 0562.35001[10] Giusti E.: 
Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, 1985. 
MR 0775682[11] Heinonen J., Kilpeläinen, T, Martio O.: 
Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, Oxford, 1993. 
MR 1207810 | 
Zbl 0780.31001[13] Malý J., Ziemer W. P.: 
Fine Regularity of Elliptic Equations. Mathematical Surveys and Monographs, Vol. 51, American Mathematical Society, 1997. 
DOI 10.1090/surv/051/04 | 
MR 1461542[14] Moschen, Maria Pia: 
Principio di massimo forte per le frontiere di misura minima. Ann. Univ. Ferrara, Sez. VII 23 (1977), 165-168. 
MR 0482508 | 
Zbl 0384.49030[17] Simon L.: 
Lectures on Geometric Measure Theory. Proc. Centre Math. Analysis, ANU Vol. 3, 1983. 
MR 0756417 | 
Zbl 0546.49019[19] Sternberg P., Ziemer W. P.: 
The Dirchlet problem for functions of least gradient. IMA Vol. Math. Appl. 47 (1993), 197-214. 
MR 1246349[20] Sternberg P., Williams G., Ziemer W. P.: 
Existence, uniqueness, and regularity for functions of least gradient. J. Reine Angew. Math. 430 (1992), 35-60. 
MR 1172906 | 
Zbl 0756.49021[21] Ziemer W. P.: 
Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation. Springer-Verlag, New York, 1989, Graduate Texts in Math. 
MR 1014685 | 
Zbl 0692.46022