[1] Appell J., De Pascale E., Vignoli A.: 
A comparison of different spectra for nonlinear operators. To appear. 
Zbl 0956.47035[3] Bonsall F. F., Duncan J.: 
Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras. Cambridge Univ. Press, Cambridge, 1971. 
MR 0288583 | 
Zbl 0207.44802[6] Conti G., De Pascale E.: 
The numerical range in the nonlinear case. Boll. Unione Mat. Ital. 15-B (1978), 210-216. 
MR 0493572 | 
Zbl 0386.47042[9] Dörfner M.: Beiträge zur Spektraltheorie nichtlinearer Operatoren. Ph.D. thesis, 1997.
[11] Furi M., Martelli M., Vignoli A.: 
Contributions to the spectral theory for nonlinear operators in Banach spaces. Annali Mat. Pura Appl. 118 (1978), 229-294. 
MR 0533609 | 
Zbl 0409.47043[12] Furi M., Martelli M., Vignoli A.: 
On the solvability of nonlinear operator equations in normed spaces. Annali Mat. Pura Appl. 128 (1980), 321-343. 
MR 0591562 | 
Zbl 0456.47051[13] Gustafson K. E., Rao D. K. M.: 
Numerical Range. Springer, Berlin, 1997. 
MR 1417493[14] Kachurovskij R. L: 
Regular points, spectrum and eigenfunctions of nonlinear operators. Dokl. Akad. Nauk SSSR 188 (1969), 274-277.  (In Russian, Engl.transl. Soviet Math. Dokl. 10 (1969), 1101-1105.) 
MR 0251599 | 
Zbl 0197.40402[16] Maddox I. J., Wickstead A. W.: 
The spectrum of uniformly Lipschitz mappings. Proc. Royal Irish Acad. 89-A (1989), 101-114. 
MR 1021228 | 
Zbl 0661.47048[18] Pietschmann F., Rhodius A.: 
The numerical ranges and the smooth points of the unit sphere. Act. Sci. Math. 55 (1989), 377-379. 
MR 1033610 | 
Zbl 0697.47003[21] Rhodius A.: 
Über numerische Wertebereiche und  Spektralwertabschätzungen. Acta Sci. Math. 47 (1984), 465-470. 
MR 0783322 | 
Zbl 0575.47005[22] Verma R. U.: 
Approximation-solvability and numerical ranges in Banach spaces. Panam. Math. J. 1 (1992), 49-56. 
MR 1116245[26] Zeidler E.: 
Nonlinear Functional Anaiysis and its Applications II/B: Nonlinear Monotone Operators. Springer, Berlin, 1990. 
MR 1033498