Previous |  Up |  Next

Article

Keywords:
oscillation; delay difference equations; forced equations
Summary:
In this paper we study the oscillation of the difference equations of the form \Delta^2x_n+p_n\Delta x_n+f(n, x_{n-g}, \Delta x_{n-h})=0, in comparison with certain difference equations of order one whose oscillatory character is known. The results can be applied to the difference equation \Delta^2x_n+p_n\Delta x_n+q_n|x_{n-g}|^{\lambda}|\Delta x_{n-h}|^{\mu}\sgn x_{n-g}=0, where $\lambda$ and $\mu$ are real constants, $\lambda>0$ and $\mu\geq0$.
References:
[1] S. R. Grace: Oscillatory and asymptotic behavior of delay differential equations with a nonlinear damping term. J. Math. Anal. Appl. 168 (1992), 306-318. DOI 10.1016/0022-247X(92)90159-B | MR 1175990 | Zbl 0769.34049
[2] S. R. Grace: Oscillation theorems of comparison type of delay differential equations with a nonlinear damping term. Math. Slovaca 44 (1994), no. 3, 303-314. MR 1307320 | Zbl 0815.34061
[3] S. R. Grace B. S. Lalli: An oscillation criterion for certain second order strongly sublinear dífferential equations. J. Math. Anal. Appl. 123 (1987), 584-586. DOI 10.1016/0022-247X(87)90333-7 | MR 0883711
[4] S. R. Grace B. S. Lalli: Oscillation theorems for second order delay and neutrał difference equations. Utilitas. Math. 45 (1994), 197-211. MR 1284030
[5] S. R. Grace B. S. Lalli: Oscillation theorems for forced neutral difference equations. J. Math. Anal. Appl. 187 (1994), 91-106. DOI 10.1006/jmaa.1994.1346 | MR 1296607
[6] I. Györi G. Ladas: Oscillation Theory of Delay Differential Equations with Applications. Oxford Univ., Oxford, 1991. MR 1168471
[7] J. W. Hooker W. T. Patula: A second order nonlinear difference equations: Oscillation and asymptotic behavior. J. Math. Anal. Appl. 91 (1983), 9-29. DOI 10.1016/0022-247X(83)90088-4 | MR 0688528
[8] G. Ladas C. Qian: Comparison results and linearized oscillations for higher order difference equations. Internt. J. Math. Math. Sci. 15 (1992), 129-142. DOI 10.1155/S0161171292000152 | MR 1143937
[9] B. G. Zhang: Oscillation and asymptotic behavior of second order difference equations. J. Math. Anal. Appl. 173 (1993), 58-68. DOI 10.1006/jmaa.1993.1052 | MR 1205909 | Zbl 0780.39006
Partner of
EuDML logo