Previous |  Up |  Next

Article

Keywords:
$\theta$-continuous functions; $\alpha$-continuous functions; feebly continuous functions; nearly feebly open functions; feeble continuity; $\alpha$-continuity; $\theta$-continuity; weak continuity; $\alpha$-irresoluteness
Summary:
Classes of functions continuous in various senses, in particular $\theta$-continuous, $\alpha$-continuous, feeblz continuous a.o., and relations between the classes, are studied.
References:
[1] D. Andrijevic: Semi-preopen sets. Mat. Vesnik 38 (1986), 24-32. Zbl 0604.54002
[2] H. H. Corson, E. Michael: Metrizability of certain countable unions. Illinois J.Math. 8 (1964), 351-360. DOI 10.1215/ijm/1256059678 | MR 0170324 | Zbl 0127.13203
[3] S. G. Crossley, S. K. Hildebrand: Semi-topological properties. Fund. Math. 14 (1972), 233-254. DOI 10.4064/fm-74-3-233-254 | MR 0301690 | Zbl 0206.51501
[4] R. F. Dickman, Jr. J. R. Porter, and L. R. Rubin: Completely regular absolutes and projective objects. Pacific J. Math. 94 (1981), 277-295. DOI 10.2140/pjm.1981.94.277 | MR 0628580
[5] J. Doboš: A note on the invariance of Baire spaces under mappings. Časopis pěst. mat. 108 (1983), 409-411. MR 0727538
[6] S. Fomin: Extensions of topological spaces. Ann. Math. 44 (1943), 471-480. DOI 10.2307/1968976 | MR 0008686 | Zbl 0061.39601
[7] Z. Frolík: Remarks concerning the invariance of Baire spaces under mappings. Czech. Math. J. 11 (1961), 381-385. MR 0133098
[8] T. R. Hamlett, D. Rose: * -topological properties. Internat. J. of Math. and Math. Sci., to appear. MR 1068014
[9] R. C. Haworth, R. A. McCoy: Baire spaces. Dissert. Math. 141 (1977), 1-73. MR 0431104 | Zbl 0344.54001
[10] D. S. Janković, S. K. Hildebrand: A note on semihomeomorphisms. Math. Cronicle 16 (1987), 65-68. MR 0944619
[11] K. Kuratowski: Topology. Vol. I. Academic Press, New York, 1966. MR 0217751 | Zbl 0158.40901
[12] N. Levine: A decomposition of continuity in topological spaces. Amer. Math. Monthly 68 (1961), 44-46. DOI 10.2307/2311363 | MR 0126252 | Zbl 0100.18601
[13] N. Levine: Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly 10 (1963), 36-41. DOI 10.1080/00029890.1963.11990039 | MR 0166752 | Zbl 0113.16304
[14] S. N. Maheshwari, S. S. Thakur: On $\alpha$-irresolute mappings. Tamkang J. Math. 11 (1980), 209-214. MR 0696921
[15] A. S. Mashhour I. A. Hasanein S. N. El-Deeb: $\alpha$-continuous and $\alpha$-open mappings. Acta Math. Hung. 41 (1983), 213-218. DOI 10.1007/BF01961309 | MR 0703734
[16] J. Mioduszewski, and L. Rudolf: H-closed and extremally disconnected Hausdorff spaces. Dissert. Math. 66 (1969), 1-55. MR 0256353
[17] T. Neubrunn: Quasi-continuity. Real Anal. Exchange 14 (1988-89), 259-306. MR 0995972
[18] O. Njastad: On some classes of nearly open sets. Pacific J. Math. 15 (1965), 961-970. DOI 10.2140/pjm.1965.15.961 | MR 0195040 | Zbl 0137.41903
[19] T. Noiri: A function which preserves connected spaces. Časopis Pěst. Mat. 101 (1982), 393-396. MR 0683820 | Zbl 0511.54008
[20] T. Noiri: On $\alpha$-continuous functions. Časopis Pěst. Mat. 109(1984), 118-126. MR 0744869 | Zbl 0544.54009
[21] J. R. Porter, R. G. Woods: Extensions and Absolutes of Hausdorff Spaces. Springer-Verlag, 1988. MR 0918341 | Zbl 0652.54016
[22] V. Pták: Completeness and the open mapping theorem. Bull. Soc. Math. France 86 (1958), 41-74. DOI 10.24033/bsmf.1498 | MR 0105606
[23] I. L. Reilly, M. K. Vamanamurthy: Connectedness and strong semi-continuity. Časopis Pěst. Mat. 109 (1984), 261-265. MR 0755590 | Zbl 0553.54005
[24] L. Rudolf: Extending maps from dense subspaces. Fund. Math. 77 (1972), 171-190. DOI 10.4064/fm-77-2-171-190 | MR 0320993 | Zbl 0246.54014
Partner of
EuDML logo