Previous |  Up |  Next

Article

Keywords:
Lagrangian formalism; classical field theory; Noetherian symmetries
Summary:
The Euler-Lagrange equations are given in a geometrized framework using a differential form related to the Poincare-Cartan form. This new differential form is intrinsically characterized; the present approach does not suppose a distinction between the field and the space-time variables (i.e. a fibration). In connection with this problem we give another proof describing the most general Lagrangian leading to identically vanishing Euler-Lagrange equations. This gives the possibility to have a geometric point of view of the usual Noetherian symmetries for classical field theories and strongly supports the usefulness of the above mentioned differential form.
References:
[1] H. Poincaré: Leçons sur les méthodes nouvelles de la mécanique céleste. Gauthier-Villars, Paris, 1892.
[2] E. Cartan: Leçons sur les invariants integraux. Hermann, Paris, 1922. MR 0355764
[3] J. Klein: Espaces variationels et mécanique. Ann. Inst. Fourier 12 (1962), 1-124. DOI 10.5802/aif.120 | MR 0215269
[4] J. M. Souriau: Structure des Systemes Dynamique. Dunod, Paris, 1970. MR 0260238
[5] P. Horvàthy: Variational formalism for spinning particles. J. Math. Phys. 20 (1979), 49-52. DOI 10.1063/1.523961 | MR 0517368
[6] D. Krupka: A map associated to the Lepagean forms of the calculus of variations in fibered manifolds. Czechoslovak Math. J. 27 (1977), 114-118. MR 0431272
[7] D. E. Betounes: Extensions of the classical Cartan form. Phys. Rev. D 29 (1984), 599-606. DOI 10.1103/PhysRevD.29.599 | MR 0734285
[8] D. E. Betounes: Differential geometric aspects of the Cartan form: symmetry theory. J. Math. Phys. 28 (1987), 2347-2353. DOI 10.1063/1.527832 | MR 0907999 | Zbl 0646.58033
[9] H. Rund: A Cartan form for the field theory of Caratheodory in the calculus of variations of multiple integrals. Lecture Notes in Pure and Appl. Math. 100 (1985), 455-469. MR 0822534 | Zbl 0578.49025
[10] P. L. Garcia: The Poincare-Cartan invariant in the calculus of variations. Symp. Math. 14 (1974), 219-246. MR 0406246 | Zbl 0303.53040
[11] H. Goldschmits, S. Sternberg: The Hamilton-Cartan formalism in the calculus of variations. Ann. Inst. Fourier 23 (1973), 203-267. DOI 10.5802/aif.451 | MR 0341531
[12] M. J. Gotay: A multisymplectic framework for classical field theory and the calculus of variations I. Covariant Hamiltonian formalism. Mechanics, Analysis and Geometry: 200 Years after Lagrange (M. Francaviglia; D. D. Holms, eds.). North-Holland, Amsterdam, 1990, pp. 203-235. MR 1098517
[13] D. J. Saunders: An alternative approach to the Cartan form in the Lagrangian field theories. J. Phys. A 20 (1987), 339-349. DOI 10.1088/0305-4470/20/2/019 | MR 0874255
[14] I. Kijowski: A finite-dimensional canonical formalism in classical field theory. Comm. Math. Phys. 30 (1973), 99-128. DOI 10.1007/BF01645975 | MR 0334772
[15] W. M. Tulczjew: The Lagrange complex. Bull. Soc. Math. France 105 (1977), 419-431. MR 0494272
[16] W. M. Tulcziew: The Euler-Lagrange resolution. International Colloquium on Differential Geometrical Methods in Mathematical Physics, Aix-en-Province, 1979, Lecture Notes in Math. 836. Springer, Berlin, 1980, pp. 22-48. MR 0607685
[17] P. J. Olver: Applications of Lie Groups to Differential Equations. Springer, Berlin, 1986. MR 0836734 | Zbl 0588.22001
[18] D. G. Edelen: The null set of the Euler-Lagrange operator. Arch. Rat. Mech. Anal. 11 (1962), 117-121. DOI 10.1007/BF00253934 | MR 0150623 | Zbl 0125.33002
[19] H. Rund: Integral formulae associated with the Euler-Lagrange operator of multiple integral problems in the calculus of variation. Aequationes Math. 11 (1974), 212-229. DOI 10.1007/BF01834920 | MR 0361971
[20] D. Krupka: A geometric theory of ordinary first order variational problems in fibered manifolds. I. Critical sections. J. Math. Anal. Appl. 49 (1975), 180-206. DOI 10.1016/0022-247X(75)90169-9 | MR 0362397 | Zbl 0312.58002
[21] S. Hojman: Problem of the identically vanishing Euler-Lagrange derivatives in field theory. Phys. Rev. D 27 (1983), 451-453. DOI 10.1103/PhysRevD.27.451
[22] D. R. Grigore: Generalized Lagrangian dynamics and Noetherian symmetries. Internat. J. Modern Phys. A 7 (1992), 7153-7168. DOI 10.1142/S0217751X9200329X | MR 1189252 | Zbl 0972.37523
[23] D. R. Grigore: A derivation of the Nambu-Goto action from invariance principles. J. Phys. A 25 (1992), 3797-3811. DOI 10.1088/0305-4470/25/13/026 | MR 1172077 | Zbl 0755.58063
[24] D. R. Grigore: The derivation of Einstein equations from invariance principles. Class. Quant. Gravity 9 (1992), 1555-1571. DOI 10.1088/0264-9381/9/6/012 | MR 1166690
[25] D. R. Grigore: A generalized Lagrangian formalism in particle mechanics and classical field theory. Fortschr. Phys. 41 (1993), 567-617. MR 1247114
[26] O. T. Popp: Cohomology for Lagrangian systems and Noetherian symmetries. Submitted.
[27] J. M. Lévy-Leblond: Group-theoretical foundation of classical mechanics: The Lagrangian gauge problem. Comment. Math. Phys. 12 (1969), 64-79. DOI 10.1007/BF01646436 | MR 0249006
Partner of
EuDML logo