[1] H. Poincaré: Leçons sur les méthodes nouvelles de la mécanique céleste. Gauthier-Villars, Paris, 1892.
[2] E. Cartan:
Leçons sur les invariants integraux. Hermann, Paris, 1922.
MR 0355764
[4] J. M. Souriau:
Structure des Systemes Dynamique. Dunod, Paris, 1970.
MR 0260238
[6] D. Krupka:
A map associated to the Lepagean forms of the calculus of variations in fibered manifolds. Czechoslovak Math. J. 27 (1977), 114-118.
MR 0431272
[9] H. Rund:
A Cartan form for the field theory of Caratheodory in the calculus of variations of multiple integrals. Lecture Notes in Pure and Appl. Math. 100 (1985), 455-469.
MR 0822534 |
Zbl 0578.49025
[10] P. L. Garcia:
The Poincare-Cartan invariant in the calculus of variations. Symp. Math. 14 (1974), 219-246.
MR 0406246 |
Zbl 0303.53040
[11] H. Goldschmits, S. Sternberg:
The Hamilton-Cartan formalism in the calculus of variations. Ann. Inst. Fourier 23 (1973), 203-267.
DOI 10.5802/aif.451 |
MR 0341531
[12] M. J. Gotay:
A multisymplectic framework for classical field theory and the calculus of variations I. Covariant Hamiltonian formalism. Mechanics, Analysis and Geometry: 200 Years after Lagrange (M. Francaviglia; D. D. Holms, eds.). North-Holland, Amsterdam, 1990, pp. 203-235.
MR 1098517
[15] W. M. Tulczjew:
The Lagrange complex. Bull. Soc. Math. France 105 (1977), 419-431.
MR 0494272
[16] W. M. Tulcziew:
The Euler-Lagrange resolution. International Colloquium on Differential Geometrical Methods in Mathematical Physics, Aix-en-Province, 1979, Lecture Notes in Math. 836. Springer, Berlin, 1980, pp. 22-48.
MR 0607685
[17] P. J. Olver:
Applications of Lie Groups to Differential Equations. Springer, Berlin, 1986.
MR 0836734 |
Zbl 0588.22001
[19] H. Rund:
Integral formulae associated with the Euler-Lagrange operator of multiple integral problems in the calculus of variation. Aequationes Math. 11 (1974), 212-229.
DOI 10.1007/BF01834920 |
MR 0361971
[21] S. Hojman:
Problem of the identically vanishing Euler-Lagrange derivatives in field theory. Phys. Rev. D 27 (1983), 451-453.
DOI 10.1103/PhysRevD.27.451
[25] D. R. Grigore:
A generalized Lagrangian formalism in particle mechanics and classical field theory. Fortschr. Phys. 41 (1993), 567-617.
MR 1247114
[26] O. T. Popp: Cohomology for Lagrangian systems and Noetherian symmetries. Submitted.
[27] J. M. Lévy-Leblond:
Group-theoretical foundation of classical mechanics: The Lagrangian gauge problem. Comment. Math. Phys. 12 (1969), 64-79.
DOI 10.1007/BF01646436 |
MR 0249006