Previous |  Up |  Next

Article

Title: On the Lagrange-Souriau form in classical field theory (English)
Author: Grigore, D. R.
Author: Popp, O. T.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 123
Issue: 1
Year: 1998
Pages: 73-86
Summary lang: English
.
Category: math
.
Summary: The Euler-Lagrange equations are given in a geometrized framework using a differential form related to the Poincare-Cartan form. This new differential form is intrinsically characterized; the present approach does not suppose a distinction between the field and the space-time variables (i.e. a fibration). In connection with this problem we give another proof describing the most general Lagrangian leading to identically vanishing Euler-Lagrange equations. This gives the possibility to have a geometric point of view of the usual Noetherian symmetries for classical field theories and strongly supports the usefulness of the above mentioned differential form. (English)
Keyword: Lagrangian formalism
Keyword: classical field theory
Keyword: Noetherian symmetries
MSC: 37J15
MSC: 37J99
MSC: 58F05
MSC: 70H03
MSC: 70H35
MSC: 70S05
MSC: 70S10
idZBL: Zbl 0901.58016
idMR: MR1618723
DOI: 10.21136/MB.1998.126290
.
Date available: 2009-09-24T21:29:27Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126290
.
Reference: [1] H. Poincaré: Leçons sur les méthodes nouvelles de la mécanique céleste.Gauthier-Villars, Paris, 1892.
Reference: [2] E. Cartan: Leçons sur les invariants integraux.Hermann, Paris, 1922. MR 0355764
Reference: [3] J. Klein: Espaces variationels et mécanique.Ann. Inst. Fourier 12 (1962), 1-124. MR 0215269, 10.5802/aif.120
Reference: [4] J. M. Souriau: Structure des Systemes Dynamique.Dunod, Paris, 1970. MR 0260238
Reference: [5] P. Horvàthy: Variational formalism for spinning particles.J. Math. Phys. 20 (1979), 49-52. MR 0517368, 10.1063/1.523961
Reference: [6] D. Krupka: A map associated to the Lepagean forms of the calculus of variations in fibered manifolds.Czechoslovak Math. J. 27 (1977), 114-118. MR 0431272
Reference: [7] D. E. Betounes: Extensions of the classical Cartan form.Phys. Rev. D 29 (1984), 599-606. MR 0734285, 10.1103/PhysRevD.29.599
Reference: [8] D. E. Betounes: Differential geometric aspects of the Cartan form: symmetry theory.J. Math. Phys. 28 (1987), 2347-2353. Zbl 0646.58033, MR 0907999, 10.1063/1.527832
Reference: [9] H. Rund: A Cartan form for the field theory of Caratheodory in the calculus of variations of multiple integrals.Lecture Notes in Pure and Appl. Math. 100 (1985), 455-469. Zbl 0578.49025, MR 0822534
Reference: [10] P. L. Garcia: The Poincare-Cartan invariant in the calculus of variations.Symp. Math. 14 (1974), 219-246. Zbl 0303.53040, MR 0406246
Reference: [11] H. Goldschmits, S. Sternberg: The Hamilton-Cartan formalism in the calculus of variations.Ann. Inst. Fourier 23 (1973), 203-267. MR 0341531, 10.5802/aif.451
Reference: [12] M. J. Gotay: A multisymplectic framework for classical field theory and the calculus of variations I. Covariant Hamiltonian formalism.Mechanics, Analysis and Geometry: 200 Years after Lagrange (M. Francaviglia; D. D. Holms, eds.). North-Holland, Amsterdam, 1990, pp. 203-235. MR 1098517
Reference: [13] D. J. Saunders: An alternative approach to the Cartan form in the Lagrangian field theories.J. Phys. A 20 (1987), 339-349. MR 0874255, 10.1088/0305-4470/20/2/019
Reference: [14] I. Kijowski: A finite-dimensional canonical formalism in classical field theory.Comm. Math. Phys. 30 (1973), 99-128. MR 0334772, 10.1007/BF01645975
Reference: [15] W. M. Tulczjew: The Lagrange complex.Bull. Soc. Math. France 105 (1977), 419-431. MR 0494272
Reference: [16] W. M. Tulcziew: The Euler-Lagrange resolution.International Colloquium on Differential Geometrical Methods in Mathematical Physics, Aix-en-Province, 1979, Lecture Notes in Math. 836. Springer, Berlin, 1980, pp. 22-48. MR 0607685
Reference: [17] P. J. Olver: Applications of Lie Groups to Differential Equations.Springer, Berlin, 1986. Zbl 0588.22001, MR 0836734
Reference: [18] D. G. Edelen: The null set of the Euler-Lagrange operator.Arch. Rat. Mech. Anal. 11 (1962), 117-121. Zbl 0125.33002, MR 0150623, 10.1007/BF00253934
Reference: [19] H. Rund: Integral formulae associated with the Euler-Lagrange operator of multiple integral problems in the calculus of variation.Aequationes Math. 11 (1974), 212-229. MR 0361971, 10.1007/BF01834920
Reference: [20] D. Krupka: A geometric theory of ordinary first order variational problems in fibered manifolds. I. Critical sections.J. Math. Anal. Appl. 49 (1975), 180-206. Zbl 0312.58002, MR 0362397, 10.1016/0022-247X(75)90169-9
Reference: [21] S. Hojman: Problem of the identically vanishing Euler-Lagrange derivatives in field theory.Phys. Rev. D 27 (1983), 451-453. 10.1103/PhysRevD.27.451
Reference: [22] D. R. Grigore: Generalized Lagrangian dynamics and Noetherian symmetries.Internat. J. Modern Phys. A 7 (1992), 7153-7168. Zbl 0972.37523, MR 1189252, 10.1142/S0217751X9200329X
Reference: [23] D. R. Grigore: A derivation of the Nambu-Goto action from invariance principles.J. Phys. A 25 (1992), 3797-3811. Zbl 0755.58063, MR 1172077, 10.1088/0305-4470/25/13/026
Reference: [24] D. R. Grigore: The derivation of Einstein equations from invariance principles.Class. Quant. Gravity 9 (1992), 1555-1571. MR 1166690, 10.1088/0264-9381/9/6/012
Reference: [25] D. R. Grigore: A generalized Lagrangian formalism in particle mechanics and classical field theory.Fortschr. Phys. 41 (1993), 567-617. MR 1247114
Reference: [26] O. T. Popp: Cohomology for Lagrangian systems and Noetherian symmetries.Submitted.
Reference: [27] J. M. Lévy-Leblond: Group-theoretical foundation of classical mechanics: The Lagrangian gauge problem.Comment. Math. Phys. 12 (1969), 64-79. MR 0249006, 10.1007/BF01646436
.

Files

Files Size Format View
MathBohem_123-1998-1_6.pdf 858.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo