Title:
|
On the Lagrange-Souriau form in classical field theory (English) |
Author:
|
Grigore, D. R. |
Author:
|
Popp, O. T. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
123 |
Issue:
|
1 |
Year:
|
1998 |
Pages:
|
73-86 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The Euler-Lagrange equations are given in a geometrized framework using a differential form related to the Poincare-Cartan form. This new differential form is intrinsically characterized; the present approach does not suppose a distinction between the field and the space-time variables (i.e. a fibration). In connection with this problem we give another proof describing the most general Lagrangian leading to identically vanishing Euler-Lagrange equations. This gives the possibility to have a geometric point of view of the usual Noetherian symmetries for classical field theories and strongly supports the usefulness of the above mentioned differential form. (English) |
Keyword:
|
Lagrangian formalism |
Keyword:
|
classical field theory |
Keyword:
|
Noetherian symmetries |
MSC:
|
37J15 |
MSC:
|
37J99 |
MSC:
|
58F05 |
MSC:
|
70H03 |
MSC:
|
70H35 |
MSC:
|
70S05 |
MSC:
|
70S10 |
idZBL:
|
Zbl 0901.58016 |
idMR:
|
MR1618723 |
DOI:
|
10.21136/MB.1998.126290 |
. |
Date available:
|
2009-09-24T21:29:27Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/126290 |
. |
Reference:
|
[1] H. Poincaré: Leçons sur les méthodes nouvelles de la mécanique céleste.Gauthier-Villars, Paris, 1892. |
Reference:
|
[2] E. Cartan: Leçons sur les invariants integraux.Hermann, Paris, 1922. MR 0355764 |
Reference:
|
[3] J. Klein: Espaces variationels et mécanique.Ann. Inst. Fourier 12 (1962), 1-124. MR 0215269, 10.5802/aif.120 |
Reference:
|
[4] J. M. Souriau: Structure des Systemes Dynamique.Dunod, Paris, 1970. MR 0260238 |
Reference:
|
[5] P. Horvàthy: Variational formalism for spinning particles.J. Math. Phys. 20 (1979), 49-52. MR 0517368, 10.1063/1.523961 |
Reference:
|
[6] D. Krupka: A map associated to the Lepagean forms of the calculus of variations in fibered manifolds.Czechoslovak Math. J. 27 (1977), 114-118. MR 0431272 |
Reference:
|
[7] D. E. Betounes: Extensions of the classical Cartan form.Phys. Rev. D 29 (1984), 599-606. MR 0734285, 10.1103/PhysRevD.29.599 |
Reference:
|
[8] D. E. Betounes: Differential geometric aspects of the Cartan form: symmetry theory.J. Math. Phys. 28 (1987), 2347-2353. Zbl 0646.58033, MR 0907999, 10.1063/1.527832 |
Reference:
|
[9] H. Rund: A Cartan form for the field theory of Caratheodory in the calculus of variations of multiple integrals.Lecture Notes in Pure and Appl. Math. 100 (1985), 455-469. Zbl 0578.49025, MR 0822534 |
Reference:
|
[10] P. L. Garcia: The Poincare-Cartan invariant in the calculus of variations.Symp. Math. 14 (1974), 219-246. Zbl 0303.53040, MR 0406246 |
Reference:
|
[11] H. Goldschmits, S. Sternberg: The Hamilton-Cartan formalism in the calculus of variations.Ann. Inst. Fourier 23 (1973), 203-267. MR 0341531, 10.5802/aif.451 |
Reference:
|
[12] M. J. Gotay: A multisymplectic framework for classical field theory and the calculus of variations I. Covariant Hamiltonian formalism.Mechanics, Analysis and Geometry: 200 Years after Lagrange (M. Francaviglia; D. D. Holms, eds.). North-Holland, Amsterdam, 1990, pp. 203-235. MR 1098517 |
Reference:
|
[13] D. J. Saunders: An alternative approach to the Cartan form in the Lagrangian field theories.J. Phys. A 20 (1987), 339-349. MR 0874255, 10.1088/0305-4470/20/2/019 |
Reference:
|
[14] I. Kijowski: A finite-dimensional canonical formalism in classical field theory.Comm. Math. Phys. 30 (1973), 99-128. MR 0334772, 10.1007/BF01645975 |
Reference:
|
[15] W. M. Tulczjew: The Lagrange complex.Bull. Soc. Math. France 105 (1977), 419-431. MR 0494272 |
Reference:
|
[16] W. M. Tulcziew: The Euler-Lagrange resolution.International Colloquium on Differential Geometrical Methods in Mathematical Physics, Aix-en-Province, 1979, Lecture Notes in Math. 836. Springer, Berlin, 1980, pp. 22-48. MR 0607685 |
Reference:
|
[17] P. J. Olver: Applications of Lie Groups to Differential Equations.Springer, Berlin, 1986. Zbl 0588.22001, MR 0836734 |
Reference:
|
[18] D. G. Edelen: The null set of the Euler-Lagrange operator.Arch. Rat. Mech. Anal. 11 (1962), 117-121. Zbl 0125.33002, MR 0150623, 10.1007/BF00253934 |
Reference:
|
[19] H. Rund: Integral formulae associated with the Euler-Lagrange operator of multiple integral problems in the calculus of variation.Aequationes Math. 11 (1974), 212-229. MR 0361971, 10.1007/BF01834920 |
Reference:
|
[20] D. Krupka: A geometric theory of ordinary first order variational problems in fibered manifolds. I. Critical sections.J. Math. Anal. Appl. 49 (1975), 180-206. Zbl 0312.58002, MR 0362397, 10.1016/0022-247X(75)90169-9 |
Reference:
|
[21] S. Hojman: Problem of the identically vanishing Euler-Lagrange derivatives in field theory.Phys. Rev. D 27 (1983), 451-453. 10.1103/PhysRevD.27.451 |
Reference:
|
[22] D. R. Grigore: Generalized Lagrangian dynamics and Noetherian symmetries.Internat. J. Modern Phys. A 7 (1992), 7153-7168. Zbl 0972.37523, MR 1189252, 10.1142/S0217751X9200329X |
Reference:
|
[23] D. R. Grigore: A derivation of the Nambu-Goto action from invariance principles.J. Phys. A 25 (1992), 3797-3811. Zbl 0755.58063, MR 1172077, 10.1088/0305-4470/25/13/026 |
Reference:
|
[24] D. R. Grigore: The derivation of Einstein equations from invariance principles.Class. Quant. Gravity 9 (1992), 1555-1571. MR 1166690, 10.1088/0264-9381/9/6/012 |
Reference:
|
[25] D. R. Grigore: A generalized Lagrangian formalism in particle mechanics and classical field theory.Fortschr. Phys. 41 (1993), 567-617. MR 1247114 |
Reference:
|
[26] O. T. Popp: Cohomology for Lagrangian systems and Noetherian symmetries.Submitted. |
Reference:
|
[27] J. M. Lévy-Leblond: Group-theoretical foundation of classical mechanics: The Lagrangian gauge problem.Comment. Math. Phys. 12 (1969), 64-79. MR 0249006, 10.1007/BF01646436 |
. |