| Title: | On the set of solutions of the system $x\sb 1+x\sb 2+x\sb 3=1, x\sb 1x\sb 2x\sb 3=1$ (English) | 
| Author: | Hlaváček, Miloslav | 
| Language: | English | 
| Journal: | Mathematica Bohemica | 
| ISSN: | 0862-7959 (print) | 
| ISSN: | 2464-7136 (online) | 
| Volume: | 123 | 
| Issue: | 1 | 
| Year: | 1998 | 
| Pages: | 1-6 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | A proof is given that the system in the title has infinitely many solutions of the form $a_1 + \ii a_2$, where $a_1$ and $a_2$ are rational numbers. (English) | 
| Keyword: | equations in many variables | 
| Keyword: | linear diophantine equations | 
| Keyword: | multiplicative equations | 
| Keyword: | Weierstrass $p$-function | 
| Keyword: | diophantine equations | 
| MSC: | 10B05 | 
| MSC: | 10M05 | 
| MSC: | 11D04 | 
| MSC: | 11D25 | 
| MSC: | 11D72 | 
| MSC: | 11G05 | 
| idZBL: | Zbl 0898.11008 | 
| idMR: | MR1618699 | 
| DOI: | 10.21136/MB.1998.126294 | 
| . | 
| Date available: | 2009-09-24T21:28:42Z | 
| Last updated: | 2020-07-29 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/126294 | 
| . | 
| Reference: | [1] K. Chandrasekharan: Elliptic Functions.Springer-Verlag, Berlin. Heidelberg, 1985. Zbl 0575.33001, MR 0808396 | 
| Reference: | [2] S. Schwarz: Algebraic Numbers.Přírodovědecké nakladatelství, Praha, 1950. (In Slovak.) MR 0048500 | 
| . |