Previous |  Up |  Next

Article

Title: On operators with the same local spectra (English)
Author: Torgašev, Aleksandar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 1
Year: 1998
Pages: 77-83
Summary lang: English
.
Category: math
.
Summary: Let $B(X)$ be the algebra of all bounded linear operators in a complex Banach space $X$. We consider operators $T_1,T_2\in B(X)$ satisfying the relation $\sigma _{T_1}(x) = \sigma _{T_2}(x)$ for any vector $x\in X$, where $\sigma _T(x)$ denotes the local spectrum of $T\in B(X)$ at the point $x\in X$. We say then that $T_1$ and $T_2$ have the same local spectra. We prove that then, under some conditions, $T_1 - T_2$ is a quasinilpotent operator, that is $\Vert (T_1 - T_2)^n\Vert ^{1/n} \rightarrow 0$ as $n \rightarrow \infty $. Without these conditions, we describe the operators with the same local spectra only in some particular cases. (English)
Keyword: Banach space
Keyword: spectrum
Keyword: local spectrum
MSC: 47A10
MSC: 47A11
idZBL: Zbl 0926.47002
idMR: MR1614080
.
Date available: 2009-09-24T10:11:14Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127400
.
Reference: [1] I. Colojoara, C. Foiaş: Quasinilpotent equivalence of not necessarily commuting operators.Journal Math. Mech. 15 (1966), 521–540. MR 0192344
Reference: [2] I. Colojoara, C. Foiaş: Theory of Generalized Spectral Operators.Gordon and Breach, New York, 1968. MR 0394282
Reference: [3] C. Foiaş: Spectral maximal spaces and decomposable operators in Banach spaces.Arch. Math. 14 (1963), 341–349. MR 0152893, 10.1007/BF01234965
Reference: [4] J.D.Gray: Local analytic extensions of the resolvent.Pacific J. Math. 27(2) (1968), 305–324. Zbl 0172.17204, MR 0236738, 10.2140/pjm.1968.27.305
Reference: [5] R.C. Sine: Spectral decomposition of a class of operators.Pacific J. Math. 14 (1964), 333–352. Zbl 0197.39501, MR 0164242, 10.2140/pjm.1964.14.333
Reference: [6] P. Vrbová: On local spectral properties of operators in Banach spaces.Czechoslovak Math. J. 23 (1973), 483–492. MR 0322536
.

Files

Files Size Format View
CzechMathJ_48-1998-1_7.pdf 299.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo