Previous |  Up |  Next

Article

Title: Compact attractor for weakly damped driven Korteweg-de Vries equations on the real line (English)
Author: Laurençot, Ph.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 1
Year: 1998
Pages: 85-94
Summary lang: English
.
Category: math
.
Summary: We investigate the long-time behaviour of solutions to the Korteweg-de Vries equation with a zero order dissipation and an additional forcing term, when the space variable varies over $R$, and prove that it is described by a maximal compact attractor in $H^2(R)$. (English)
Keyword: Korteweg-de Vries equation
Keyword: attractor
Keyword: unbounded domain.
MSC: 35B40
MSC: 35Q53
MSC: 47H20
MSC: 58F39
idZBL: Zbl 0928.35145
idMR: MR1614084
.
Date available: 2009-09-24T10:11:22Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127401
.
Reference: [Al] E.A.  Alarcón: Existence and finite dimensionality of the global attractor for a class of nonlinear dissipative equations.Proc. Roy. Soc. Edinburgh 123A (1993), 893–916. MR 1249693
Reference: [BV] A.V.  Babin, M.I. Vishik: Attractors of partial differential evolution equations in an unbounded domain.Proc. Roy. Soc. Edinburgh 116A (1990), 221–243. MR 1084733
Reference: [Ba] J.  Ball: A proof of the existence of global attractors for damped semilinear wave equations.(to appear). MR 2026182
Reference: [BSc] J.  Bona, R.  Scott: Solutions of the Korteweg-de Vries equation in fractional order Sobolev spaces.Duke Math. J. 43 (1976), 87–99. MR 0393887, 10.1215/S0012-7094-76-04309-X
Reference: [BSm] J.L.  Bona, R.  Smith: The initial-value problem for the Korteweg-de Vries equation.Philos. Trans. Roy. Soc. London 278A (1975), 555–604. MR 0385355, 10.1098/rsta.1975.0035
Reference: [Fe] E.  Feireisl: Bounded, locally compact global attractors for semilinear damped wave equations on $R^N$.Diff. Integral Eq. 9 (1996), 1147–1156. MR 1392099
Reference: [Gh1] J.M.  Ghidaglia: Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time.J. Diff. Eq. 74 (1988), 369–390. Zbl 0668.35084, MR 0952903, 10.1016/0022-0396(88)90010-1
Reference: [Gh2] J.M.  Ghidaglia: A note on the strong convergence towards attractors of damped forced KdV equation.J. Diff. Eq. 110 (1994), 356–359. MR 1278375, 10.1006/jdeq.1994.1071
Reference: [GT] J.M.  Ghidaglia, R.  Temam: Attractors for damped nonlinear hyperbolic equations.J. Math. Pures Appl. 66 (1987), 273–319. MR 0913856
Reference: [Ha] J.K.  Hale: Asymptotic Behavior of Dissipative Systems.Math. Surveys and Monographs 25, Amer. Math. Soc., Providence, R.I., 1988. Zbl 0642.58013, MR 0941371
Reference: [MGK] R.M.  Miura, C.S.  Gardner, M.D.  Kruskal: Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion.J. Math. Phys. 9 (1968), 1204–1209. MR 0252826, 10.1063/1.1664701
Reference: [Te] R.  Temam: Infinite-dimensional dynamical systems in mechanics and physics.Appl. Math. Sc. 68, Springer-Verlag, New York, 1988. Zbl 0662.35001, MR 0953967, 10.1007/978-1-4684-0313-8
.

Files

Files Size Format View
CzechMathJ_48-1998-1_8.pdf 333.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo