Previous |  Up |  Next

Article

Title: Distributional derivatives of functions of two variables of finite variation and their application to an impulsive hyperbolic equation (English)
Author: Idczak, Dariusz
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 1
Year: 1998
Pages: 145-171
Summary lang: English
.
Category: math
.
Summary: We give characterizations of the distributional derivatives $D^{1,1}$, $D^{1,0}$, $D^{0,1}$ of functions of two variables of locally finite variation. Then we use these results to prove the existence theorem for the hyperbolic equation with a nonhomogeneous term containing the distributional derivative determined by an additive function of an interval of finite variation. An application of the above theorem to a hyperbolic equation with an impulse effect is also given. (English)
MSC: 26A21
MSC: 26A99
MSC: 26B05
MSC: 26B30
MSC: 35L10
MSC: 35R10
MSC: 46F10
MSC: 46G05
idZBL: Zbl 0930.26006
idMR: MR1614025
.
Date available: 2009-09-24T10:12:05Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127406
.
Reference: [1] P. Antosik, J. Mikusiński, R. Sikorski: Theory of Distributions—the Sequential Aproach.Elsevier Scientific Publishing Company, Amsterdam, Polish Scientific Publishers, Warsaw, 1973. MR 0365130
Reference: [2] J.A. Clarkson, C.R. Adams: On definitions of bounded variation for functions of two variables.Trans. Amer. Math. Soc. 35 (1933), 824–854. MR 1501718, 10.1090/S0002-9947-1933-1501718-2
Reference: [3] A. Halanay, D. Wexler: Qualitative Theory of Impulsive Systems.Moscow, 1971. (Russian)
Reference: [4] I. Halparin: Introduction to the Theory of Distributions.University of Toronto Press, Toronto, 1952. (Russian)
Reference: [5] T.H. Hildebrandt: Introduction to the Theory of Integration.Academic Press, New York-London, 1963. Zbl 0112.28302, MR 0154957
Reference: [6] D. Idczak: Functions of several variables of finite variation and their differentiability.Annales Pol. Math. 60 (1994), no. 1, 47–56. Zbl 0886.26007, MR 1295107, 10.4064/ap-60-1-47-56
Reference: [7] J. Kurzweil: Generalized ordinary differential equations.Czechoslovak Math. J. 8 (1958), no. 83, 360–388. Zbl 0102.07003, MR 0111878
Reference: [8] J. Kurzweil: On generalized ordinary differential equations with discontinuous solutions.Prikl. Mat. Mech. 22 (1958), 27–45. MR 0111876
Reference: [9] J. Kurzweil: Linear differential equations with distributions as coefficients.Bull. Acad. Pol. Sci., ser. Math. Astr. Phys. 7 (1959), 557–560. Zbl 0117.34401, MR 0111887
Reference: [10] V. Lakshmikantham: Trends in the theory of impulsive differential equations.Proceedings of the International Conference on Theory and Applications of Differential Equations, Ohio University, 1988. MR 1026202
Reference: [11] A. Lasota: Remarks on linear differential equations with distributional perturbations.Ordinary differential equations (Proc. NRL–MRC Conf. Math. Res. Center, Naval Res. Lab., Washington, D.C., 1971), New York, Academic Press, 1972, pp. 489–495. Zbl 0309.34007, MR 0473282
Reference: [12] J. Ligeza: On distributional solutions of some systems of linear differential equations.Čas. pro Pěst. Mat. 102 (1977), 37–41. Zbl 0345.34003, MR 0460757
Reference: [13] S. Łojasiewicz: An Introduction to the Theory of Real Functions.John Willey and Sons, Chichester, 1988.
Reference: [14] R. Pfaff: Generalized systems of linear differential equations.Proc. of the Royal Sci. of Edinburgh, sect. A 89 (1981), 1–14. Zbl 0475.34005, MR 0628123
Reference: [15] W. W. Schmaedeke: Optimal control theory for nonlinear vector-differential equations containing measures.SIAM Control 3 (1965), no. 2, 231–280. Zbl 0161.29203, MR 0189870
Reference: [16] L. Schwartz: Théorie des Distributions I.Paris, 1950.
Reference: [17] R. Sikorski: Funkcje Rzeczywiste I.PWN, Warszawa, 1958. MR 0105468
Reference: [18] S. Walczak: Absolutely continuous functions of several variables and their application to differential equations.Bull. Polish Acad. Sci. Math. 35 (1987), no. 11–12, 733–744. Zbl 0691.35029, MR 0961712
Reference: [19] Z. Wyderka: Linear Differential Equations with Measures as Coefficients and Control Theory.Siles. Univ. Press, Katowice, 1994. Zbl 0813.34058, MR 1292252
Reference: [20] Z. Wyderka: Linear differential equations with measures as coefficients and the control theory.Čas. pro Pěst. Mat. 114 (1989), no. 1, 13–27. Zbl 0664.34013, MR 0990112
.

Files

Files Size Format View
CzechMathJ_48-1998-1_13.pdf 451.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo