[1] C. Berge: 
Sur le couplage maximum d’un graphe. C. R. Acad. Sci. Paris (A) 247 (1958), 258–259. 
MR 0100850 | 
Zbl 0086.16301[5] A. D. Glukhov: 
The maximum genus of planar graphs. Ukrain. Mat. Zh. 34 (1982), 97–99. (Russian) 
MR 0647937[8] M. Jungerman: 
A characterization of upper embeddable graphs. Trans. Amer. Math. Soc. 241 (1978), 401–406. 
MR 0492309 | 
Zbl 0379.05025[9] N. P. Khomenko and A. D. Glukhov: 
Single-component $2$-cell embeddings and the maximum genus of a graph. Some Topological and Combinatorial Properties of Graphs, Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1980, pp. 5–23. (Russian) 
MR 0583197[10] N. P. Khomenko, N. A. Ostroverkhy and V. A.Kuzmenko: The maximum genus of a graph. $\varphi $-Transformations of Graphs, Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1973, pp. 180–207. (Ukrainian, English summary)
[11] N. P. Khomenko and E. V. Yavorsky: 
$\varphi $-Transformations of the representation graph. Preprint 70.7, Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1970. (Russian) 
MR 0531858[12] D. König: Graphok és matrixok. Math. Fiz. Lapok 38 (1931), 116–119. (Hungarian)
[13] L. Nebeský: 
A new characterization of the maximum genus of a graph. Czechoslovak Math. J. 31 (106) (1981), 604–613. 
MR 0631605[14] L. Nebeský: 
On $2$-cell embeddings of graphs with minimum number of regions. Czechoslovak Math. J. 35 (110) (1985), 625–631. 
MR 0809045[15] L. Nebeský: 
Characterizing the maximum genus of a connected graph. Czechoslovak Math. J. 43 (118) (1993), 177–185. 
MR 1205240[17] E. A. Nordhaus, R. D. Ringeisen, B. M. Stewart, and A. T. White: 
A Kuratowski-type theorem for the maximum genus of a graph. J. Combin. Theory Ser. B 12 (1972), 260–267. 
DOI 10.1016/0095-8956(72)90040-8 | 
MR 0299523[20] W. T. Tutte: 
The factorization of linear graphs. J. London Math. Soc. 22 (1947), 107–111. 
MR 0023048 | 
Zbl 0029.23301[21] N. H. Xuong: 
How to determine the maximum genus of a graph. J. Combin. Theory Ser. B (1979), 217–225. 
MR 0532589 | 
Zbl 0403.05035